
Fast and Reliable Browser Identification with
JavaScript Engine Fingerprinting

Martin Mulazzani∗, Philipp Reschl†, Markus Huber∗,
Manuel Leithner∗, Sebastian Schrittwieser∗ and Edgar Weippl∗

∗SBA Research
Vienna, Austria
†FH Campus Wien

Vienna, Austria

Abstract—Web browsers are crucial software components
in today’s usage of the Internet, but the reliable detection
of whether a client is using a specific browser can still be
considered a nontrivial problem. Reliable browser identification
is crucial for online security and privacy e.g., regarding drive-by
downloads and user tracking, and can be used to enhance the
user’s security. So far the UserAgent string is often used to
identify a given browser, but it is a self-reported string provided
by the client and can be changed arbitrarily.

In this paper we propose a new method for identifying web
browsers based on the underlying Javascript engine, which can
be executed on the client side within a fraction of a second. Our
method is three orders of magnitude faster than previous work
on Javascript engine fingerprinting, and can be implemented with
well below a few hundred lines of code. We show the feasibility of
our method with a survey and discuss the consequences for user
privacy and browser security. Furthermore, we collected data for
more than 150 browser and operating system combinations, and
present algorithms to make browser identification as fast as possi-
ble. UserAgent string modifications become easily detectable with
JavaScript engine fingerprinting, which is shown exemplarily on
the Tor browser bundle as it uses a uniform UserAgent string
across different browser versions. Finally, we propose to use our
results for enhancing state-of-the-art session management (with
or without SSL), as reliable browser identification can be used to
increase the complexity of session hijacking attacks considerably.

Keywords-Browser Fingerprinting, Privacy, Security

I. INTRODUCTION

With the rise of ever more sophisticated Web applications
that nowadays even compete with native software, the web
browser became the dominant interface connecting the user to
a computing system. Platforms such as Gmail or Zoho.com
were designed from the ground up to be primarily accessed
via web browser, replacing their native counterparts (email
client and office suite). Due to the immense importance of
the web browser for the interaction with the user, it became
a central component of almost every modern operating
system: Microsoft has Internet Explorer, Apple has Safari,
and Google is building ChromeOS, an operating system
based entirely on its web browser Chrome. Furthermore,
system-independent browsers such as Opera also contribute
to the highly competitive and diverse browser market.

While today’s browsers interpret a website’s code in
similar ways (based on standards), the actual implementations
of these standards differ. This diversity of browsers has
always caused headaches for Web developers, as the same
website can vary across different browsers with respect to
functionality or appearance, requiring additional testing and
debugging of a website’s code in order to ensure correct
functionality in relevant browsers. However, this can also
have severe implications on privacy and security. In this
paper, we propose a novel concept for browser identification,
which exploits exactly these imperfect implementations of
standards in the different browsers. Our work was originally
motivated by the security scanner nmap, which uses TCP/IP
stack fingerprinting to determine the operating system of a
remote host. In a very similar way, we use the browser’s
underlying JavaScript engine for browser identification.
While implementation differences in HTML5 or CSS could
also be used for fingerprinting, we decided to base our
approach on JavaScript as it is well established, supported
by all major browsers, and works on mobile devices such as
smartphones and tablets. JavaScript is furthermore used by
a very high percentage of websites, and enabled by default
on all major browsers. While other methods for server-side
browser identification exist (in particular and by design, the
User-Agent string), our approach can be considered more
robust. While the User-Agent string can be set to an arbitrary
value by the user, the JavaScript fingerprint is authentic
for each browser and cannot be easily ported to a different
browser. It is not easily possible to use a modified version
of e.g., Internet Explorer with SpiderMonkey, the JavaScript
engine of Mozilla’s Firefox in order to obfuscate the actual
browser in use.

In particular, the contributions of this paper are as follows:

• We propose a new method to reliably identify a browser
based on the underlying JavaScript engine. Our method is
more than three orders of magnitude faster than previous
work.

• We show the feasibility and reliability of our method with
a survey.



• We show how this can be used to detect modified UserA-
gent strings, used, for example, by the Tor browser bundle
to increase the size of the anonymity set of its users.

• We propose an iterative protocol for server-side detection
of session hijacking using browser fingerprinting.

• Raise awareness for such advanced fingerprinting meth-
ods, and discuss measures to protect users.

The rest of the paper is organized as follows: Section II
gives the technical background. Our method for browser
identification based on fingerprinting the JavaScript engine
is introduced in Section III. We show the feasibility of
browser identification with JavaScript engine fingerprinting
in Section IV and discuss our results as well as possible
countermeasures in Section V. Related work is presented in
Section VI before we conclude in Section VII.

II. BACKGROUND

Today’s browser market is highly competitive. Browser
vendors publish new versions in ever-shorter time spans
and regularly add new features, with especially mobile
browsers for smartphones and tablets on the rise. Many
of these updates increase the overall performance of the
browser in order to enhance the user experience and reduce
loading times: just-in-time compilation (JIT) of Javascript,
for example, allows dynamic compilation of Javascript and
became part of the Javascript engines in Firefox and Google
Chrome’s V8 quite recently, among others. Using the GPU
for rendering in Internet Explorer’s Chakra engine is yet
another feature that was introduced recently and increased
browser performance considerably. Sandboxing the browser
or specific parts, like the Flash plugin, was introduced to
increase the overall browser security and to combat the
widespread use of Flash-based security exploits.

Javascript has been standardized as ECMAScript [8],
and all major browsers implement it in order to allow
client-side scripting and dynamic websites. Traditionally,
Web developers use the UserAgent string or the navigator
object (i.e., navigator.UserAgent) to identify the client’s
Web browser, and load corresponding features or CSS files.
The UserAgent string is defined in RFC2616 [11] as a
sequence of product tokens and identifies the software as
well as significant subparts. Tokens are listed in order of their
significance by convention. The navigator object contains the
same string as the UserAgent string. However, both are by
no means security features, and can be set arbitrarily by the
user.

Mowery et al. [22] recently implemented and evaluated
browser identification with Javascript fingerprinting based
on timing and performance patterns. In their paper, the
authors used a combination of 39 different well-established
Javascript benchmarks, like the SunSpider Suite 0.9 and
the V8 Benchmark Suite v5, and generated a normalized
fingerprint from runtime patterns. Even though these artificial
Javascript benchmarks, such as SunSpider, do not necessarily

reflect real-world Web applications [28], using their patterns
for fingerprint generation is a convenient approach. In total,
the runtime for fingerprinting was relatively high, with 190
seconds per user on average (caused partly by an intentional
delay of 800ms between tests). Our approach is superior in
multiple ways: (1) It’s runtime is more than three orders
of magnitude faster (less than 200ms on average compared
to 190s), while having a comparable overhead for creating
and collecting fingerprint samples. (2) It can be implemented
in just a few hundred lines of Javascript and is undetectable
for the user, as the CPU is not stalled noticeably. (3) Many
recent browser versions stall the execution of Javascript from
tabs and browser windows that are currently not visible to
the user to increase the responsiveness of the currently active
windows. This, however, could severely distort the timing
patterns generated from [22] and was not addressed in the
paper.

For the rest of the paper we will use the following terminol-
ogy due to sometimes ambiguous usage of the term browser
fingerprinting in the literature: the fingerprinting in our ap-
proach refers to Javascript fingerprinting, not the browser. We
use Javascript engine fingerprinting to reliably identify a given
browser, and for identifying the browser itself as well as the
major version number. Related work (like Panopticlick [7])
uses the term browser fingerprinting for identifying a particular
browser instance.

III. DESIGN

For our fingerprinting method, we compared test results
from openly available Javascript conformance tests and col-
lected results from different browsers and browser versions
for fingerprint generation. These tests cover the ECMAScript
standard in version 5.1 and assess to what extent the browser
complies with the standard, what features are supported and
specifically which parts of the standard are implemented
incorrectly or not at all. In essence, our initial observation was
that the test cases that fail in, e.g., Firefox, are completely
different from the test cases that fail in Safari. We started
working with Google’s Sputnik test cases, but later switched
to test2621. test262 is the official TC39 test suite for EC-
MAScript, it is still improved regularly and is a superset of
the Sputnik test cases. For ensuring comparability within our
results from the experiments in Section IV we used test262
from mid-January 2012, which includes 11,148 unique test
cases for desktop browsers, while for the mobile browsers we
used an updated version of test262 with 11,570 test cases.
However, the ECMAScript standard as well as the test suite are
constantly updated, leaving enough future testing capabilities
for Javascript engine fingerprinting. Running the full test262
suite takes approximately 10 minutes on a desktop PC, while
on smartphones and tablets it takes between 45 minutes and
an hour, depending on the underlying hardware.

1http://test262.ecmascript.org

http://test262.ecmascript.org


A. Efficient Javascript Fingerprinting

While Javascript conformance tests like Sputnik or test262
consist of thousands of independent test cases, not all of
them are necessary for browser identification. In fact, a single
test case may be sufficient, e.g., to distinguish two specific
browsers - if one of the browsers fails in a particular test
case, while the other one does not, and assuming a priori that
only these two browsers are within the set of browsers to test,
this single test case is already enough to distinguish them. An
example: Opera 11.64 only fails in 4 out of more than 10,000
tests cases from mid-January, while the most recent version
of Internet Explorer 9 at that time failed in almost 400 test
cases. If the test set contains only those two browsers, and
the goal is to distinguish whether the client is using Opera
11.61 or Internet Explorer 9, a single test from the 400 failed
test cases of Internet Explorer 9 (that are not within the set
of 4 failed test cases from Opera) is sufficient to reliably
distinguish those two browsers, and can be executed within a
fraction of a second.

To formalize this approach: the test set of browsers is
the set of browsers and browser versions that a given entity
wants to make reliably distinguishable, in our case with
Javascript engine fingerprinting. First, each browser is tested
with test262. The results are then compared, and a minimal
fingerprint is calculated for each browser (in relation to the
other browsers in the test set). The use case for the minimal
fingerprint is a web server that wants to assess whether a
UserAgent string from the client is forged with respect to
the other browsers in the test set. The web server can verify
the browser. For efficiency, one of the requirements is that
the fingerprint for each browser is as small as possible. The
details of our implementation and the algorithm for generating
the minimal fingerprints can be found in Section III-B.

Another use case of our method is to calculate a decision
tree: instead of fingerprinting a particular browser with respect
to the test set, we propose to build a binary decision tree to
iteratively identify the browser in multiple rounds. The use
case for this method is that the web server wants to identify
the browser used under the assumption that the UserAgent
might be forged. This method allows a larger test set than
using minimal fingerprints while reducing the execution time
on the client side. The pseudocode for calculating a minimal
decision tree can be found in Section III-C.

B. Minimal Fingerprint

We use a greedy algorithm to find a (possibly minimal)
fingerprint for a given test set: We start by running test262
for each of the browsers in the test set, and calculate the
number of browsers that fail for each test case. As the
JavaScript engine is a static part of the browser, this needs
to be done only once per browser. We then compare the
results of test262 for the browsers within the test set and
calculate for each failed test case the number of browsers

that fail. We call the total number of browsers that fail a
particular test case the uniqueness u (with respect to the test
set). We then select a test case with u = 1 at random and
remove the browser from the test set, as this test uniquely
identifies this browser. The uniqueness u is then recalculated
for the remaining test cases. The process is repeated until
either a unique fingerprint has been found for every browser,
or no test case with u = 1 is found. In the latter case, we
change our selection and choose a different test case until
either a minimal test set is found or no solution can be
found. An alternative approach would be to use some form of
machine learning to find minimal fingerprints, but our results
indicate that this is not (yet) necessary and our simplistic,
greedy algorithm works well in practice. With the resulting
set of fingerprints it becomes possible to assess whether a
browser is what it claims to be: if all the tests of the minimal
fingerprint for that browser fail, and no minimal fingerprints
for the other browsers from the test set do, the browser is
uniquely identifiable with respect to the test set. To make
the algorithm and, in consequence, browser fingerprinting
more resilient against errors, multiple tests could be used per
browser (in case the user’s browser is not part of the test set
and the UserAgent string is not used to check this beforehand).

However, a basic assumption here is that the browser is
included in the test set during fingerprint calculation in the
first place. If the browser is not in the test set, false positives
could occur if the engine is similar to one of the fingerprints
(with respect to the minimal fingerprint). It is also possible
to dynamically extend the test set: If a new UserAgent string
is encountered that was not part of the test set, fingerprints
could be recalculated on the fly to determine whether the
UserAgent correctly identifies the browser: Instead of using
the precalculated fingerprints, the browser is added to the test
set, fingerprints are recalculated, and the identification process
starts again with new minimal fingerprints for all browsers
in the test set. This would allow relative fingerprinting over
time and could be used to verify only the, e.g., five most
popular browser versions for the previous month or day.

The minimal set of failed test cases for the four common
browsers from 2012 shown in Table I to illustrate minimal
fingerprints. The browsers in the test set are Firefox 12,
Opera 11.64, Internet Explorer 9 and Chrome 20, with a
resulting minimal fingerprint consisting of only 4 tests. With
the algorithm explained above, we calculate the minimal
fingerprints as follows: For every test case, the uniqueness in
the test set is calculated. If a test fails for a specific browser,
it receives a check mark in the table, and if the browser
does not fail that test, it is crossed out. While this seems
counter-intuitive, the check mark highlights the potential to
use this particular test case for fingerprinting, as the number
of failed test cases is much smaller than the number of
tests passed. One of the test cases with u = 1 is selected
at random, in the example this is 13.0-13-s. This test then
becomes the minimal fingerprint for Internet Explorer 9, and



Internet Explorer is removed from the set of browsers that
do not yet have a fingerprint. The uniqueness is recalculated,
and another test case is selected at random with u = 1,
e.g., 10.6-7-1, which becomes the minimal fingerprint for
Firefox 12. Next, Opera gets 15.4.4.4-5-c-i-1 as fingerprint,
and Chrome S15.8.2.16 A7. If a web server now tries to
verify a given UserAgent, all 4 tests are sent for execution to
the client, and the web server can verify the UserAgent with
respect to the test set if only one test fails (in this example).

C. Building a Decision Tree

To identify a user’s browser without relying a priori on
the UserAgent, we build a binary decision tree for a given
test set and assess if the browser is included in it by running
multiple test rounds. For every test, we step down one level
of the decision tree until we finally reach a leaf node. Inner
nodes in this decision tree are test cases, while the edges
show whether the browser fails that test or not. Instead of
calculating a unique fingerprint for each browser in the test
set, we need to identify the test cases that can be used to
split the number of browsers that fail (respectively pass)
equally. Multiple rounds of discriminating test cases can thus
be used instead of calculating the minimal fingerprints for
large test sets. The decision tree can reduce the total number
of executed test cases considerably for such large test sets,
making browser identification much faster. The decision tree
is especially useful if the test set and the total number of test
cases for the minimal fingerprints are rather large.

15.4.4.4-
5-c-i-1

10.6-7-1 13.0-13-s 

Fig. 1. Decision tree for Table I

To calculate a decision tree, we adapt the algorithm above
slightly. We start again by calculating the uniqueness u for
each test262 test case that fails, sort the list and pick the test
that splits the set into halves as the first test in our tree. If
there is no such test, we select the statistical mode. We then

continue to split the array of browsers into two parts, and
recursively repeat this until we have built a complete decision
tree with all the browsers from the test set. No assumptions
can be made for the distribution of failed test cases, which
means that in the worst case the tree can become a linear list
instead of a tree if all failed tests have uniqueness u = 1.
Again, if no tree can be found using the statistical mode, we
can slightly vary the choice of test cases for the inner nodes
and rerun the algorithm. In the ideal case, every inner node in
the tree splits the subset of browsers in the test set in half, and
the total number of tests that need to be executed at the client
is only O(logn) compared to O(n) for executing the minimal
fingerprints. Referring to the example from Section III-B, we
can construct a decision tree as follows (cf. Table I): We start
again by calculating the uniqueness for every test case of every
browser that fails. We sort the results, and pick test 15.4.4.4-
5-c-i-1 as our root note, because it splits the test set perfectly
into halves. We then select the tests 10.6-7-1 and 13.0-13-s as
the child nodes, and can identify the browser by running only
two test cases, instead of four with the minimal fingerprinting
approach. The resulting decision tree is shown in Figure 1.
As with the algorithm for calculating minimal fingerprints, the
algorithm is straightforward and fast to implement and execute
on the client as well as on the server - it works well across
different browsers and versions, thus negating the need for a
more complex algorithm.

D. Implications on Security and Privacy

While the UserAgent string is traditionally used to report
the web browser and version to a server, this is often
not sufficient as the user can change it arbitrarily. In the
context of browser security, current malware often relies on
vulnerabilities in browsers (besides plugins like Flash) for
launching exploits. Especially exploit kits like Blackhole [16]
have been shown to use the UserAgent String to exploit
client-side vulnerabilities. It is furthermore well known
in the security community that Javascript and drive-by-
download attacks can be used to endanger client security
and privacy [3], [32], [4]. For the implications to privacy
we use the security model of Tor [6] and the definition
of an anonymity set [27], which could be decreased by a
malicious website using JavaScript engine fingerprinting.
Section VI discusses numerous recent papers that have been
using browser fingerprinting to endanger user’s online privacy.

In our threat model we assume that an attacker has the
capabilities to host a website and direct users to it. The
victim then fetches and executes Javascript code on the client
side. This can be done e.g., by renting advertisement space,
or with social engineering attacks where the user is tricked
into opening a malicious website. This is already happening
with malware on a large scale, and everything necessary to
conduct such attacks can be purchased relatively easily. This
is of relevance for our work, as malware authors could use
browser fingerprinting to use it for increasing reliability of



Web browser 15.4.4.4-5-c-i-1 13.0-13-s S15.8.2.16 A7 10.6-7-1 15.2.3.6-4-410
Opera 11.64 ! % % % %

Firefox 12.0 ! % % ! %

Internet Explorer 9 % ! % % %

Chrome 20 % % ! % !
Uniqueness u 2 1 1 1 1

TABLE I
TESTS FROM test262 AND THEIR USABILITY FOR BROWSER IDENTIFICATION

their exploits, thwart sandboxed environments like Wepawet2

and to increase the stealthiness of their malware: instead
of relying on the UserAgent string to find out if a victim
is exploitable, Javascript fingerprinting could be used. The
bar to incorporate this is low, and could be of significance
for the arms race between malware authors and security
research in the future. Detection of such malicious code
would be considerably harder, and we aim to increase
awareness for security researchers of such sophisticated
browser fingerprinting methods. More work is needed to
assess if this or similar fingerprinting is already used by
malware in the wild.

E. Benign Uses of Fingerprinting

Here we discuss some benign use cases in addition to the
sections discussing the framework and our results, respectively.
To protect against session hijacking, web servers could use
JavaScript engine fingerprinting to verify or refute validity of
HTTP sessions, as session hijackers usually clone all possibly
identifying plaintext information like session cookies (e.g.,
Firesheep3 or FaceNiff4 do) or the complete HTTP header.
With JavaScript engine fingerprinting such attacks become
detectable at the server side, as modified UserAgents can
be detected. Another way to secure HTTP sessions would
be to constantly challenge the browser and add Javascript
engine fingerprinting as an additional security layer: At the
beginning of a session the browser is identified with minimal
fingerprinting. For every latter request the webserver chooses a
subset of random test cases and includes them in the JavaScript
code, thus challenging the client. The overhead would be
minimal and not noticeable to the client. If the responses
do not correlate with the expected outcome, the session is
terminated. While the attacker is able to see the challenges, he
might not know the correct responses - the attacker is forced
to (1) either use the same browser down to the very same
version (which may be not possible, e.g., to run an Internet
Explorer on Android), or (2) collect the fingerprints for his
victim beforehand to fake the replies, which would be very
time consuming. Thus Javascript fingerprinting can be used to
raise the bar for session hijacking in the arms race against
attackers. This method could also be used for connections
that are secured with HTTPS to prevent HTTPS MITM

2https://wepawet.iseclab.org
3http://codebutler.com/firesheep
4http://faceniff.ponury.net

attacks. Recently hacked CAs like DigiNotar or Comodo and
“Operation Black Tulip”5 have shown that HTTPS alone is
simply not enough to secure online communication anymore.
However, it cannot completely defy session hijacking as the
attacker might for example simply relay the challenges to the
actual client. We believe though that this would be a valid
countermeasure against session hijacking as this can be added
easily to existing web applications.

IV. RESULTS AND EVALUATION

To evaluate the possibility and power of Javascript fin-
gerprinting, we implemented the methods outlined above.
We collected different browser version and operating system
combinations for desktop browsers as well as for mobile
browser versions on smartphones and tablets for fingerprint
generation in a database. An excerpt of the data can be seen in
Table II6. To evaluate our method with respect to the security
and privacy implications discussed in Section III-D, we first
evaluate if it is possible to determine the actual browser behind
a modified UserAgent as used by the Tor Browser Bundle on
a large scale. We also conducted a survey and measure the
performance impact of our method on the client side.

A. Destkop and Mobile Browsers

In total, we stored the test262 results for more than 150
different browser version and operating system combinations,
ignoring minor version upgrades of browsers that contained
no changes in the underlying Javascript engine. While this
may not sound like much, it includes all major browser
releases from the last three years, which accumulates to
approximately 98% of browser market share since 20087.
For desktop browsers we collected test results for fingerprint
generation from the five most popular browsers on three
different operating systems: Windows, OS X and Linux.
Different mobile browser versions and their test results can be
seen in Table III. Results for mobile browsers are focused on
Android and iOS devices. While the setup files for desktop
browsers are often freely available and were easy to collect,
it was much more difficult for us to get access to a broad
spectrum of older mobile browsers as it is not possible to
revert the running operating system of a smartphone or a
tablet to an older software version, among other reasons as

5http://www.enisa.europa.eu/media/news-items/operation-black-tulip/
6Please see the author’s homepage for the full data set
7http://www.w3schools.com/browsers/browsers stats.asp

https://wepawet.iseclab.org
http://codebutler.com/firesheep
http://faceniff.ponury.net
http://www.enisa.europa.eu/media/news-items/operation-black-tulip/
http://www.w3schools.com/browsers/browsers_stats.asp


Browser Win 7 WinXP Mac OS X Browser Win 7 WinXP Mac OS X
Firefox 3.6.26 3955 3955 3955 Chrome 8 1022 1022 1022
Firefox 4 290 290 290 Chrome 10 715 715 715
Firefox 5 264 264 264 Chrome 11 489 489 489
Firefox 6 214 214 214 Chrome 12 449 449 —
Firefox 7 190 190 190 Chrome 13 427 427 —
Firefox 12 165 165 165 Chrome 14 430 430 430
Firefox 15 161 161 161 Chrome 16 420 420 420
Firefox 17 171 171 171 Chrome 17 210 210 210
Firefox 19 191 191 191 Chrome 18 35 35 35

Chrome 19 18 18 18
IE 6 (Sputnik) — 468 — Chrome 21 9 9 9
IE 8 (Sputnik) — 473 — Chrome 23 10 10 10
IE 9 611 — — Chrome 25 17 17 17
IE 10 7 — —

Safari 5.0.5 777 1585 1513
Opera 11.52 3827 3827 3827 Safari 5.1 777 853 —
Opera 11.64 4 4 4 Safari 5.1.2 777 777 776
Opera 12.02 4 4 4 Safari 5.1.7 548 548 547
Opera 12.14 9 9 9

TABLE II
SELECTION OF BROWSERS AND THEIR FAILED TEST CASES FROM test262 (AND Sputnik)

Browser OS Device # of fails
Safari iOS 5.1.1 iPhone 4S 988
Safari iOS 6.1.2 iPhone 4 28

Browser Android 2.2 GalaxyTab 2130
Browser Android 2.3.7 HTC Desire 1328
Browser Android 4.0.3 GalaxyTab2 588
Browser Android 4.0.4 Nexus S 591
Browser Android 4.1.2 Nexus S 23

Chrome 18 Android 4.0.3 GalaxyTab2 46
Firefox 19 Android 4.0.3 GalaxyTab2 191

TABLE III
NUMBER OF FAILED TEST CASES FOR MOBILE BROWSERS

protection against jailbreaking.

As the Javascript engines are not as dynamic as the num-
bering scheme of browser vendors, equal results are obtained
with consecutive browser versions if the underlying Javascript
engine has not been changed. For example, the major Firefox
version numbers often indicate changes in the underlying
principles, while the minor numbers are used for, e.g., security
updates: Updates 6.0.1 and 6.0.2, for example, were used to
solely remove the Dutch certificate authority Diginotar, which
got hacked and was used for issuing rogue certificates [25].
The results are discussed in detail in Section V.

B. Tor Browser Bundle
While modifying the UserAgent can be used to hide a

user’s browser and version, JavaScript engine fingerprinting
can be used to reliably identify the web browser of a user. The
Tor Browser Bundle is using modified UserAgent strings on a
large scale, and we will show how these modified UserAgents
can be detected by web servers. The Tor network [6] is an
overlay network that provides online anonymity to its users
by hiding the user’s IP address. At the time of writing it
is estimated to be used by more than 500,000 users every

day8. It has been previously shown that the majority of Tor
users do not browse the Web securely [15], and Javascript
engine fingerprinting can be used to further increase the
attack surface for sophisticated de-anonymization attacks.
The Tor Browser Bundle (TBB) is a convenient way to
use the Tor anonymization network with a known, secure
configuration and without the need for the user to install any
software. It is available for Windows, Linux and OS X and
has many important privacy-enhancing features enabled by
default, e.g., TorButton or HTTPS Everywhere, prepackaged
and preconfigured, making it the recommended way to use
the Tor network securely at the time of writing. By default,
the Tor Browser Bundle changes the UserAgent string to
increase the size of the anonymity set [5]. In the Tor Browser
Bundle the UserAgent is uniformly changed to Firefox 5.0
while the shipped browser often uses a more recent version.
Mozilla releases new versions of Firefox every six weeks.
The numbers of the actual and the expected results from
test262 running on Windows 7 can be seen in Table IV. A
decision tree similar to the example in Section III-C can
be constructed to minimize the number of tests needed to

8https://metrics.torproject.org/users.html

https://metrics.torproject.org/users.html


accurately identify the browser used with the Tor Browser
Bundle. In the most recent versions of TBB the browser
was changed to Firefox 17 with long-term support, and the
UserAgent is correctly identifying the browser as Firefox 17.

Care has to be taken when interpreting the implications
of Javascript engine fingerprinting on the Tor network: Even
though Javascript is not disabled by default in the Tor Browser
Bundle [1], the only information the malicious website opera-
tor obtains is that the user is, in fact, using a different version
of Firefox than indicated. The web server can already easily
determine that the user is using the Tor network by comparing
the client’s IP address to the public list of Tor exit relays.
However, Javascript fingerprinting can reduce the size of the
anonymity set of all Tor users, and can harm anonymity to a
yet unknown extent.

C. Experimental Survey

To evaluate the performance and practicability of our
fingerprinting method, we conducted a survey among
colleagues, students and friends for a duration of several
weeks in 2011 to find out (1) whether our method was
working reliably, and (2) to measure the time and bandwidth
needed for fingerprinting. The test set consisted of Firefox 4,
Chrome 10 and Internet Explorer 8 & 9, which were the top
browsers at that time and had a cumulative worldwide market
share of approx. 66% at that time. For each of the browsers
in our test set, we manually selected 10 failed test cases
from the Sputnik test suite to be run on the client instead of
the minimal fingerprint, to increase accuracy and decrease
the possibility of false positives. As a result, every client
executed 40 test cases in total, and the failed test cases were
then used to determine the user’s Javascript engine. Due to
the automatic update function of Google Chrome, the version
number changed from 10 to 12 during the testing period, but
the 10 test cases we had selected for Chrome did not change,
so the updates did not skew our results and Chrome was still
correctly identified even though the Javascript engine changed
with the updates (see Table II). Users were directed to a
webpage where they were asked to identify their web browser
manually using a dropdown menu and to start the test. As a
ground truth to evaluate our fingerprinting, we relied on the
UserAgent string in combination with the manual browser
classification by the users. The Javascript file containing the
40 tests as well as the testing framework had a size of 24
kilobytes, while each of the 10 tests per browser were only
between 2,500 and 3,000 bytes in size. The results were
written to a database. We used a cookie to prevent multiple
test runs by the same browser, and also blocked submissions
with the same UserAgent string and IP address that originated
in close temporal vicinity in case the browser was configured
to ignore cookies.

In total, we were able to collect 189 completed tests. From
those 189 submissions, 175 were submitted by one of the four
browsers covered by the test set, resulting in an overall relative

coverage of more than 90%. 14 submissions were made with
browsers not in the test set, mainly smartphone web browsers.
We compared the results of Javascript fingerprinting with
the UserAgent string as well as the user choice from the
dropdown menu, and Javascript fingerprinting had the correct
result for all browsers in the test set. In one case our method
identified a UserAgent string manipulation, as it was set to
a nonexistent UserAgent. In 15 cases, the users made an
error identifying their browser manually from the dropdown
menu, but the UserAgent and the results from fingerprinting
matched. There were no false positives for the browsers
within the test set; the algorithm for fingerprinting identified
browsers if and only if all the test cases for that browser
failed and all tests for the other browsers did not fail. The
runtime for the entire test was short, with 90ms on average
for PCs and 200ms on average for smartphones (even though
smartphones were not part of the test set).

V. DISCUSSION

The results above show that JavaScript engine fingerprinting
is a feasible approach to identify or verify a given browser,
even for mobile devices like smartphones, with only
small overhead regarding execution time on the client and
bandwidth. On the server side the impact is negligible,
as it can be implemented as a small number of database
lookups. The “best” browser regarding Javascript standard
conformance in our set of tested browsers was Opera, with
only 4 failed tests in its most recent versions. Firefox and
Chrome improved the engine constantly between releases,
which happen at a much higher pace. Internet Explorer used a
different XMLHttpRequest method before version 8 and thus
did not work with test262, so we relied on the Sputnik tests
and test numbers for fingerprint generation in Section IV-C.
Please note that it is not the total number of failed test cases
that is of importance, but if there is a difference between the
browsers in the test set. For browser identification and with
respect to the chosen test set, a single test case per browser is
often sufficient to distinguish between two or more browsers.
Also, these results and the number of failed tests are not
static in nature: browsers, ECMAscript and the test suites are
under active development and are constantly improved, with
ECMAscript currently preparing version 6 of the standard
(codename “Harmony”).

While it is possible to detect a specific browser version with
the algorithms discussed above, our method cannot be used
to detect the underlying operating system (compared to the
approach used in [22]). Other means are necessary to identify
it as well as the underlying computing architecture (x86, x64,
...). Due to their complexity, JavaScript engines reuse their
engine across different operating systems, as it nowadays
takes multiple man-years to develop a modern JavaScript
engine. All the latest browser versions at the time of writing
that run on different operating systems and platforms seem
to use the same Javascript engine. The only exception we



Version TBB Browser UserAgent test262 exp. test262 Detectable
2.3.25-4 Firefox 17esr Firefox 17 171 171 %

2.3.25-2 Firefox 10esr Firefox 10 172 172 %

2.2.35-9 Firefox 12.0 Firefox 5.0 165 264 !

2.2.35-8 Firefox 11.0 Firefox 5.0 164 264 !

2.2.35-3 Firefox 9.0.1 Firefox 5.0 167 264 !

2.2.33-2 Firefox 7.0.1 Firefox 5.0 190 264 !

2.2.32-3 Firefox 6.0.2 Firefox 5.0 214 264 !

2.2.30-2 Firefox 5.0.1 Firefox 5.0 264 264 %

2.2.24-1 Firefox 4.0 Firefox 3.6.3 290 3956 !

TABLE IV
DETECTABILITY OF USERAGENT STRING MANIPULATIONS IN TBB

could find were (mostly historic) versions of Safari, where
the same version number on different operating systems used
different versions of the Javascript engine (see Table II). For all
the other browsers we tested, the version number convention
across operating systems seems to correlate with the Javascript
engine. We could show on the other hand that operating system
detection for smartphones and tablet PCs is possible, and that
we can easily distinguish between e.g., Android or iOS with
our method. Due to the larger update cycles compared to
desktop browsers, and due to the fact that there are still a lot of
old Android versions in use, JavaScript engine fingerprinting is
thus especially dangerous for mobile devices. It is furthermore
possible to distinguish between a mobile browser and one
running on a regular computer easily, if both are included in a
test set. However, our sample size for mobile devices is much
smaller compared to our desktop browser dataset - more work
is needed in this area.

A. Countermeasures

It is naive to believe that Javascript engines across different
browsers will conform uniformly with the standard in the
future due to the complexity of the Javascript engines. As
this is unlikely to happen in the near future, we propose
preventing or detecting fingerprinting on the client side. Client-
side protection could be done either by the browser itself [4],
a browser extensions looking for fingerprinting of any kind, or
by using a proxy server that can detect and block fingerprinting
patterns similar to TCP/IP stack fingerprinting prevention
methods [30]. We are currently working on a browser exten-
sion that can detect Javascript fingerprinting, and hope to work
on a proxy solution in the near future as well.

B. Future Work

Future work towards browser fingerprinting includes
other core features of browsers that are not yet uniformly
implemented, such as HTML5 or CSS3. We plan to add
these to the fingerprint generation process, to decrease overall
runtime and the computational overhead even further, and to
make our approach work with browsers that have Javascript
disabled. We also plan to assess whether current advertising
networks [29] are already using Javascript fingerprinting,

just as they were recently found to already use tricks to
spawn almost undeletable cookies like evercookie [18], Flash
cookies [31] or ETag respawning [2]. We are also working on
a framework that can detect and prevent session hijacking on
insecure connections (with or without SSL alike), as proposed
in Section III-E.

VI. RELATED WORK

Javascript has recently received a lot of attention with the
rise of AJAX as a new programming paradigm and especially
with respect to client-side security [3], [13] and privacy [17].
Cross-site scripting (XSS) as one of the most prevalent online
security vulnerability in fact only works when a browser has
Javascript enabled.

Fingerprinting in general has been applied to a broad and
diverse set of software, protocols and hardware over the
years. Many implementations try to attack either the security
or the privacy aspect of the test subject, mostly by accurately
identifying the exact software version in use. One of the
oldest security-related fingerprinting software is nmap [12],
which is still used today and uses slight differences in the
implementation of network stacks to identify the underlying
operating systems and services. OS fingerprinting is often a
crucial stepping stone for an attacker, as remote exploits are
not uniformly applicable to all versions of a given operating
system or software. Another passive fingerprinting tool, p0f 9,
uses fingerprinting to identify communicating hosts from
recorded traffic. Physical fingerprinting, on the other hand,
allows an attacker to identify (or track) a given device, e.g.,
using specific clock skew patterns, which has been shown
to be feasible in practice to measure the number of hosts
behind a NAT [19], [24]. History stealing [26], [33] has been
shown to be another, effective attack vector to de-anonymize
users and could be used for browser fingerprinting as well.
User tracking is yet another threat to the privacy of users,
which is, e.g., used heavily by advertising networks [29], [21].

9http://lcamtuf.coredump.cx/p0f3

http://lcamtuf.coredump.cx/p0f3


In recent years, the focus shifted from operating system
fingerprinting towards browser and HTTP traffic fingerprinting
in the area of security and privacy research. On the one
hand, this was caused by the widespread use of firewalls as
well as normalized network stacks and increased awareness
of administrators to close unused ports. On the other hand,
the browser has become the most prevalent attack vector for
malware by far. This trend has been further boosted by the
advent of cloud computing (where the browser has to mimic
or control operating system functionality), online banking and
e-commerce, which use a web browser as the user interface.
Recent malware relies on fingerprinting to detect if the victim’s
browser is vulnerable to a set of drive-by-download attacks [9],
[3]. For encrypted data, Web-based fingerprinting methods
rely on timing patterns [10], [14], but at higher expenses
in terms of accuracy, performance, bandwidth and time. The
EFF’s Panopticlick project10 does browser fingerprinting by
calculating the combined entropy of various browser features,
such as screen size, screen resolution, UserAgent string, and
supported plugins and system fonts [7]. Mayer was among the
first to discuss technical features that can be used for browser
fingerprinting [20]. In recent work, browser fingerprinting with
the aim of harming the user’s privacy has been used effectively
solely by using the UserAgent string [34]. Another recent
paper uses novel HTML5 features and WebGL to accurately
fingerprint browsers [23] and the underlying hardware (GPU).

VII. CONCLUSION

In this paper, we introduced a method for reliable browser
identification based on the underlying Javascript engine, and
evaluated its feasibility in multiple ways. In a survey with
189 participants, our method identified all browsers within the
test set correctly. We also evaluated the impact on systems
like the Tor Browser Bundle that use a modified UserAgent
string on purpose to increase the anonymity of users, and
collected data for generating fingerprints for more than 150
browser and operating system combinations. We showed that
this method can be used efficiently in terms of bandwidth and
computational overhead, takes less than a second to run on the
client, and can reliably identify a web browser without relying
on the UserAgent string provided by the client.

REFERENCES

[1] T. Abbott, K. Lai, M. Lieberman, and E. Price. Browser-based attacks
on tor. In Privacy Enhancing Technologies, pages 184–199. Springer,
2007.

[2] M. D. Ayenson, D. J. Wambach, and A. Soltani. Flash Cookies and
Privacy II: Now with HTML5 and ETag Respawning. 2011.

[3] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-
by-download attacks and malicious JavaScript code. In Proceedings of
the 19th international conference on World Wide Web, pages 281–290.
ACM, 2010.

[4] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. ZOZZLE: fast and
precise in-browser JavaScript malware detection. In USENIX Security
Symposium, 2011.

[5] R. Dingledine and N. Mathewson. Anonymity loves company: Usability
and the network effect. In Proceedings of the Fifth Workshop on the
Economics of Information Security (WEIS 2006), Cambridge, UK, June
2006.

10https://panopticlick.eff.org/

[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th conference on
USENIX Security Symposium-Volume 13, pages 21–21. USENIX As-
sociation, 2004.

[7] P. Eckersley. How Unique is Your Web Browser? In Privacy Enhancing
Technologies, pages 1–18. Springer, 2010.

[8] E. ECMAScript, E. C. M. Association, et al. ECMAScript Language
Specification. Online at http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-262.pdf.

[9] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by download
attacks: Challenges and open problems. iNetSec 2009–Open Research
Problems in Network Security, pages 52–62, 2009.

[10] E. W. Felten and M. A. Schneider. Timing Attacks on Web Privacy. In
Proceedings of the 7th ACM Conference on Computer and Communi-
cations Security, pages 25–32. ACM, 2000.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext transfer protocol–HTTP/1.1, June
1999. Status: Standards Track, 1999.

[12] F. Gordon Lyon. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure, 2009.

[13] O. Hallaraker and G. Vigna. Detecting Malicious Javascript Code
in Mozilla. In Proceedings 10th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2005), pages 85–
94. Ieee, 2005.

[14] A. Hintz. Fingerprinting websites using traffic analysis. In Proceedings
of the 2nd international conference on Privacy enhancing technologies,
pages 171–178. Springer-Verlag, 2002.

[15] M. Huber, M. Mulazzani, and E. Weippl. Tor HTTP usage and
information leakage. In Communications and Multimedia Security, pages
245–255. Springer, 2010.

[16] Imperva. Imperva Data Security Blog–Deconstructing the Black
Hole Exploit Kit, 2011. Online at http://blog.imperva.com/2011/12/
deconstructing-the-black-hole-exploit-kit.html.

[17] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of
privacy-violating information flows in JavaScript web applications. In
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, pages 270–283. ACM, 2010.

[18] S. Kamkar. evercookie–never forget. New York Times, 2010.
[19] T. Kohno, A. Broido, and K. Claffy. Remote physical device finger-

printing. Dependable and Secure Computing, IEEE Transactions on,
2(2):93–108, 2005.

[20] J. R. Mayer. Any person... a pamphleteer: Internet anonymity in the age
of web 2.0. Undergraduate Senior Thesis, Princeton University, 2009.

[21] J. R. Mayer and J. C. Mitchell. Third-party Web tracking: Policy and
technology. In Proceedings of the IEEE Symposium on Security and
Privacy, 2012.

[22] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting
Information in JavaScript Implementations. In Proceedings of Web 2.0
Security and Privacy 2011 (W2SP), San Franciso, May 2011.

[23] K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting Canvas in
HTML5. Proceedings of Web 2.0 Security and Privacy (W2SP) 2012,
2012.

[24] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In
Security and Privacy, 2005 IEEE Symposium on, pages 183–195. IEEE,
2005.

[25] E. E. Network and I. S. Agency. Operation Black Tulip: Certificate
authorities lose authority. Press Release, 2011.

[26] L. Olejnik, C. Castelluccia, and A. Janc. Why Johnny Can’t Browse
in Peace: On the Uniqueness of Web Browsing History Patterns. 5th
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2012), 2012.

[27] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and
pseudonymity—a proposal for terminology. In Designing privacy
enhancing technologies, pages 1–9. Springer, 2001.

[28] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter: Comparing
the behavior of JavaScript benchmarks with real Web applications.
In Proceedings of the 2010 USENIX conference on Web application
development, pages 3–3. USENIX Association, 2010.

[29] F. Roesner, T. Kohno, and D. Wetherall. Detecting and Defending
Against Third-Party Tracking on the Web. In Proceedings of the 9th
USENIX Conference on Networked systems design and implementation
(NSDI 2012). USENIX Association, 2012.

https://panopticlick.eff.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://blog.imperva.com/2011/12/deconstructing-the-black-hole-exploit-kit.html
http://blog.imperva.com/2011/12/deconstructing-the-black-hole-exploit-kit.html


[30] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack
fingerprinting. In Proceedings of the 9th USENIX Security Symposium,
volume 24, 2000.

[31] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash
Cookies and Privacy. SSRN preprint (August 2009) http://papers. ssrn.
com/sol3/papers. cfm, 2009.

[32] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. I Still Know
What You Visited Last Summer: Leaking Browsing History via User
Interaction and Side Channel Attacks. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 147–161. IEEE, 2011.

[33] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A practical attack to
de-anonymize social network users. In Security and Privacy (SP), 2010
IEEE Symposium on, pages 223–238. IEEE, 2010.

[34] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fingerprinting and
Tracking on the Web: Privacy and Security Implications. In Proceedings
of the 19th Annual Network and Distributed System Security Symposium
(NDSS 2012), February 2012.


	Introduction
	Background
	Design
	Efficient Javascript Fingerprinting
	Minimal Fingerprint
	Building a Decision Tree
	Implications on Security and Privacy
	Benign Uses of Fingerprinting

	Results and Evaluation
	Destkop and Mobile Browsers
	Tor Browser Bundle
	Experimental Survey

	Discussion
	Countermeasures
	Future Work

	Related Work
	Conclusion
	References

