Model-based Testing
Theory and Application

Franz Wotawa
Technische Universitat Graz
Institute for Software Technology
8010 Graz, Inffeldgasse 16b/2, Austria

wotawa@ist.tugraz.at

LLIF el TT: SeftNet

TU

Grazm



Point of departure




Open questions
* Have we built the right system?

[VALIDATION]

we built the system right?
' VERIFICATION




V&YV activities

* Check correctness and expectations!

—Formal verification

—Testing
(for verification and validation)



Testing framework

Requirements
Specification
Source code

Tests are characterized by:
— Input values
— Expected output values

Test suite = set of tests
Program is “correct” iff all tests are fulfilled!



Test characterization

* Which information is available?
— Black-box vs. White-box testing

Requirements
Specification

Test cases }

Program
Source Code

— Examples: Model-based testing, Equivalence-based methods,
Combinatorial testing, Coverage-based methods, Random-Testing
(Monkey Testing, Fuzz Testing,..)



Testing — a program-centric view

* Which part of the program to be tested?

— Unit-Tests

— Component tests

— Integration tests

— System tests

— User-interface Testing

-
L N

Unit/Module

Components

-

System

GUI




Testing — a process-oriented view

e At which part of the development process testing is
done?
— Verification (Unit-Tests, regressions tests,...)
— Validation

Requirements
Specification
Design
Implementation
Use / Deployment




What should | test?

* Functionality
* Robustness
e Usability




Test automation

e 2 Levels:

— Automated test case generation
* From models or the source code (Oracle problem)

— Automated test execution (e.g. JUnit)

* Challenges because of different interfaces (Web,
different OS platforms, databases, GUIs,... )

 Hardware In the Loop (HIL) testing



Model-based testing

IUT -  Active Tester Verdict:
2 < PASS
4 f FAIL
- INCONCLUSIVE
Formal Test

Model =% suites



Model?

Finite automata

Qualitative models

Constraints

UML diagrams

MouseClick(N*4) | < 1 () O
num =num * 4
Q 2. e
State Propertie
0 o
1 TextfieldP
2 NotlIsHun,
3 TextfieldP
4 WindowC



Test case generation

Directly from the model

— Equation solving (constraints)

— Traversing a graph

— Combination of solving and graph traversal

Feasible (at least for smaller models)
Orthogonal to manual testing
Focus (but not necessarily) system testing



TWO CASE STUDIES



: #’
Birgit Hofer, Bernhard Peischl an{e Frﬁr‘fz Wotawa

RRTU Technische Universitis Graz ,
Institute for Software Te dalgle]lels¥



Example

TEST APPLICATION

NUMBER

~

. N*a | [DISPLAY |- - _ .

N \

\ DISPLAY

_ oK




Exa m p I e MouseClick(OK) | num=0
(cont.)

MouseClick(Display)

MouseClick(Display)

Keyboardinput(number,RANDOM_N())|
num = TextfieldValue(number)

Keyboardinput(number,RANDOM_N
num = TextfieldValue(number)

MouseClick(N*4) |

startApplication | num=0
0
num = num * 4
MouseClick(N*4) | e
num = num * 4 <

State Properties
0 -
1 TextfieldProperty(number, 0) A NotlsHungProperty()
2 NotIsHungProperty()
3 TextfieldProperty(number,num) A NotisHungProperty()
4 WindowCaptionProperty(DISPLAY ), /A NatlsHungProperty()

eyboardinput(number,RANDOM _N())|
num = TextfieldValue(number)

MouseClick(N*4) |
num =num * 4

MouseClick(Display)



Windows Calculator Case

" Racwer o

e — - — -

Usextzerisn Ayt

Wien, 10. November 2009

18



Found faults

* Event sequenz 15 fault:
— The monkey produces a division by zero (e.g. 65/ 0),
— then it opens the menu item ?/Help.

— The value in the text field changes from the error
message ‘Division by 0 not possible’ to a number.

e Event sequence 2" fault:
— The monkey produces a division by zero,
—then it opens the menu item ?/Info.
— The info menu does not appear



FileZilla Case

* Open Source FTP client (www.filezilla.de)

* 3 Models:
— Connecting to server (quickconnect bar)

— Test of menu items (offline test)
— File operations (transfer, delete,...)

e Models have in sum 113 states and 301
transitions



%

100
90
80
70
60
50
40
30
20
10

Model coverage

State coverage

. . . . ~——
A

P

/!/ -

==@==Connection
== Menu

| o

Transaction

Transition coverage

100

5 min

10 min 30 min 1 hour 5 hours 10 hours 70

R50

40

30
20

90 /H
80 —‘=‘—__‘_’/
/
o
.

10
0

5min 10 min 30min 1hour 5hours 10 hours



Code coverage

* Function coverage
— Up to 55 % after 1 hour of testing

* Condition coverage
— Up to 26 % after 10 hours of testing

* Reasons / Explanations:
— Models do not cover the whole functionality
— Not all GUI elements used in models

— Not all parts of the code can be tested using the
GUI




Fault detection capabilities

e 3 faults introduced in original source code
* All faults found (after 10 hours)
* On average 30 minutes to detect a fault



P Ty

Coverage Based Testing with Test
Purposes

Gordon Fraser Martin Weiglhofer
Franz Wotawa

Institute for Software Technology
Graz University of Technology

QSIC 2008

Jl Fraser, Weigihoter, Wotawa QSIC 2008 Coverage Based Testing with Test Purposes




LTS Model

* Labeled Transition Systems (LTS)




Test case generation

Test purpose based
Traversing the model
Result: Sequence of inputs and outputs

Case study SIP registrar (VolP telephony)



Results test generation

C No. Regular Minimized

- TP ok oo time ok cov o time
AT R F 25 D 2h49m 100152 2h37m
D 78 72 6 8h28m 10 62 6 3hi1m
C 98 94 4 11h13m 1o B2 4 3h26m
CD 176 166 10 19h39m 12 154 10 4h30m
r 379 357 22 42h9m 44 313 22 13h44m




OpenSER commercial
C. ? 4 ;. X 94
A 40 1 9 1 27 15 82
D 100 16 28 3 72 44 28 3
C 124 25 89 '8 86 65 37 3
CD 224 41 67 3 158 109 65 3
Y 488 83 143 3 343 233 138 3

OpenSER commercial
“ —Z % 32 Z X 7 3
A 12 0 8 0 3 10 7 OB
D 1072 8 2 2 10 g2
C 12: 02 0 2 2 12 102
G252 1 13 10 2
X 45 6 37 2 8 45 35 2




WHAT’S ABOUT SECURITY
TESTING?



Applications to security testing

e Test case generation based on models of attack patterns!

* Literature:
— Franz Wotawa, Trust but Verify, In Proc. ASQT 2012.

— Josip Bozic and Franz Wotawa, XSS Pattern for Attack
Modeling in Testing, In Proc. Automation of Software Test
(AST), 2013.

— Josip Bozic and Franz Wotawa, Security Testing Based on
Attack Patterns, In Proc. 5% Intl. Workshop on Security

Testing (SECTEST), 2014.
— Josip Bozic, Dimitris E. Simos, and Franz Wotawa, Attack

Pattern-Based Combinatorial Testing , In Proc. Automation of
Software Test (AST), 2014.



Ty

31

Vulnerability Detection

SQLT: x' OR 'x'="X

User I1D:
X or Ww'x Sebmi

IDs x' Oor "x"='x
First name:s adain
Suraaae 1 admain

ID: x' o "x'='x
Firat naxe: GCordon
Surzamo: Brown

ID: x' o "x"='x
Fizat nase: Nack
Sursase: Me

ID: X' or "x'='x
ey ey >Success!
IDs X' or "x'='x

First namar Bob
Suraame: Smith

<pre>ID: x' or 'x'='x<br>First name: admin<br>Surname: admin</pre><pre>ID: x' or
'X'="'x<br>First name: Gordon<br>Surname: Brown</pre><pre>ID: x' or 'x'='x<br>First name:
Hack<br>Surname: Me</pre><pre>ID: x' or 'x'='x<br>First name: Pablo<br>Surname:
Picasso</pre><pre>ID: x' or 'x'='x<br>First name: Bob<br>Surname: Smith</pre>

Bozic, Wotawa — Security Testing Based on Attack Patterns




Vulnerability Detection

XSS: <script>alert(document.cookie)</script>

reflected

What's your name?

cument.cookie)</script> | Submit |

Bozic, Wotawa — Security Testing Based on Attack Patterns

stored

Name *

Message *

Entry

<script>alert(document.cookie)</script>

(:Sion Guesibook.




Vulnerability Detection

XSS: <script>alert(document.cookie)</script>

reflected stored
What's your name? Name * Entry
r . <script>alert(document.cookie)</script>
\cument.cookie)</script> | Submit | Message *

(:Sion Guesibook.

security=low; PHPSESSID=50d88629b1c35158e63be55e8948067b

oK |

Bozic, Wotawa — Security Testing Based on Attack Patterns




Vulnerability Detection

XSS: <script>alert(document.cookie)</script>

reflected stored
What's your name? Name * Entry
‘ . <script>alert(document.cookie)</script>
\cument.cookie)</script> | Submit | Message *

(Sion Guesttaok |

security=low; PHPSESSID=50d88629b1c35158e63be55e8948067b

.

> Success!

<pre>Hello <script>alert(document.cookie)</script></pre>

Bozic, Wotawa — Security Testing Based on Attack Patterns




Vulnerability Detection

XSS: <script>alert(document.cookie)</script>

reflected stored
What's your name? Namae *
%cument.cookie)</script>§ | Submit | Musnage *
Sgn Gesstbook
Name: Entry

Message:
Ak scriptdgtalentdocument cookie )8t fscriptigt:

> Failurel

<pre>Hello &lt;script&gt;alert(document.cookie)&lt;/scriptégt;</pre>

Bozic, Wotawa — Security Testing Based on Attack Patterns




main regon

'
Unaddressed [Attacker.address!="") 4 Addressed | / SUTstatus_init=sReq(Attacker.address) Sent_Req

> -
cise

[SUT.status_init= —ZI:II‘)J," Attacker.resp init=true

-0

-
'
Rec _Req
entry /
Attacker. action_php=actReg{Attacker address)
entry / Attacker.method =« metReq(Attacker.address)
entry / Attacker.val00 =secReg{Attacker.address)
entry / Attacker . vallO=pwReql Attacker. address) else /Attacker.count+=1:
entry / Attacker.val20«subReq(Attacker.address) Attack s Py : )
ttacker.sqk = generate{ Attacker.count, Attacker.s
entry / Attacker.val22 =sBReq(Attacker.address) b - =9 v H)
[Attacker, sgh!=""

&& Attacker.action_phpl="

A& Attacker.method! ="

A& Attacker val00! =™

8A :\!lock:-_-tv.:; : 0: = o= [Arttacker.result« « Attacker.expected

A& Attacker.val20 = GETY && Attacker.result!=""]

A& Attacker.val22!«""] : —ed - et e :

.
¥
'
Parsed !
ose
0
.

[Attacker.method= «"post” ]/ Attacker.result= attack(Attacker.address,
Attacker expected, Attacker sgh, Attacker. action_php, Attackes. method,
Artacker.valD0, Attacker.vall0, Attacker vali20, Attadker. val22) POST

-

[Attacker. result! =Attacker.expected ] / Attacker.method="get"

Model-
base

security

testin



Evaluation

Five applications: NOWASP (Mutillidae) [8], Damn
Vulnerable Web App (DVWA) [9], Bodgelt [10], Wordpress
[11] and Anchor CMS [12].

First three contain several security levels with every one
having more sophisticated filtering mechanisms.

Other programs are tested only for the second type of XSS
because these are blog software, where posts are stored
inside a database.

All applications have been deployed on an Apache Server
and comprise a MySQL database.

Collection of 33 custom SQLI and 107 XSS input strings.

Bozic, Wotawa — Security Testing Based on Attack Patterns




Ty

Evaluation

Appiivalmn T)-pr of -\Villlitﬁlb;ill_\'

Sccunty Level  Average execution time (s)  # of successful inections % coverage

DVWA SOLI low S47 X 24.24
mediem 10,55 2 606
high - - -
RXSS low 2500 iI5 14.02
mediom - - -
SXSS low 26.60) i5 14.02
medium . . .
Mutillidae SQLI low 1569 5 15.15
medium 17.94 5 15.15
high . - -
RXSS low 4220 40 37.38
mediom 52.60 40 37.38
high . . .
SXSS low S$3.30 17 15.89
medivm 78.10 17 15.89
high . . .
Bodgelt SOLI - 8.50 3 9200
RXSS . 27.20 13 12.15
SXSS . 26.30 26 24.30
Wordpress SXSS - 33.5 7 6.54
Anchor SXSS . 30 8 748

Bozic, Wotawa — Security Testing Based on Attack Patterns




Evaluation

Both attack patterns have been slightly adapted.

Wordpress was tested while our application was
authenticated so all inputs were submitted after that step.

Anchor CMS is similar to Wordpress with the difference
that all posts have to be approved by the administrator.

It was impossible to detect vulnerability on the hardest
security level of the first three apps, which means that a
more sophisticated test case generation strategy has to be
adapted for this purpose.

In Mutillidae, HttpClient enables communication on
medium and hard level.

Bozic, Wotawa — Security Testing Based on Attack Patterns




What’s next?

* Modeling of attacker

* |dea:
— attack = sequence of actions = plan
— use A.l. planning for attack generation

— more flexible



Conclusion

Model-based testing finds faults that have
been previously undetected (using manual
tests)

Completely automated generation
Requires model (+ test purposes)
Complementary to manual testing
Can be used for security testing too!



. ny 5

licsT 2015 PO

Sth IEEE Imernational Conference on
Software Testing, Verification and Validation

TU

Grazm

General Chair:

— Franz Wotawa
(TU Graz, Austria)

PC Chairs:
JAT13-.17 April 2015, Graz, Austria
_'mtwn‘.m.\'Gr.[')wﬁ(_n)r'w " % - Gordon Fraser
Ebrdon Fraser and Darito N ACChans) - X - : . .
I (\ Ly (Univ. Sheffield, UK)

— Darko Marinov
(Univ. of lllinois,
Urbana-Champaign,

Y SIEEE

Advancing Technology
for Humanity



Thank you for your attention!

“What | cannot create, | do
not understand.”

Richard Feynman
(1918-1988)



