

Advancing safe technologies, improving human lives.

Dr. Edin Arnautovic Coordinator R&D Projects

Towards Automated Driving-Safety-Critical Supercomputer on Wheels

6/15/2018

What Do They Have in Common?

Reliable Networks and Safety Controls from TTTech

The future of mobility

is automated

6/15/2018

Benefits of Automated Driving and Autonomy

(7)

Autonomous & Near **Autonomous Operations**

\$1.9 Econo near a cars b Trillion

Economic impact of near autonomous cars by 2025

Source: McKinsey

Audi piloted driving

Improved safety and accident reduction

RS 7 concept

Relieves driver to do other things

New models of mobility

New models of goods delivery

SAE Automated Driving Levels

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

Automated Driving 2005: DARPA Grand Challenge

T[**[ech**

- 4 Pentium III for 360° RADAR interface, Long range LIDAR interface, etc
- 7 Pentium Ms PCs for Short range LIDAR interface, Path planning & tracking, Drive-bywire interface, etc.

Automated Driving 2017: zFAS - Advanced Driver Assistance System

TTTech - zFAS: Advanced Driver Assistance System Platform for

Audi

© Audi Germany, https://www.youtube.c om/watch?v=R26iby1 LHoM

Car Electronics Architecture - Today's Critical Limitations (1)

- Rapid growth of software functionality and the necessary compute performance cannot be addressed with current electronics architecture and ECUs
 - autonomous driving
 - connectivity
 - Infotainment
 - electrification & hybrids
 - new mobility
- Too many ECU's with too little processing power and memory

Car Electronics Architecture - Today's Critical Limitations (2)

- Innovation cycle for features too slow
- SW/HW upgrades for existing car models difficult to impossible
 - monetization of upgrades
- Too little SW synergies between ECUs
- Scaling for different feature take rates too costly
- Too little technology synergies with consumer
 / mobile industry

Requirements for Next Generation Car Electronics Architecture (1)

Limitations

- Rapid growth of software functionality cannot be addressed with current electronics architecture and ECUs
 - autonomous driving
 - connectivity
 - Infotainment
 - electrification & hybrids
 - new mobility
- Too many ECU's with too little processing power and memory

Requirements

Scalable, high-performance compute architecture

Tlech

- drastically reduced ECU count
- real-time, safety and security functions run side-by-side
- high availability and fault-tolerance
- dynamic software re-load and upgrade

Requirements for Next Generation Car Electronics Architecture (2)

Limitations

- Innovation cycle for features too slow
- SW/HW upgrades for existing car models difficult to impossible
 - monetization of upgrades
- Too little SW synergies between ECUs
- Scaling for different feature take rates too costly
- Too little technology synergies with consumer / mobile industry

Requirements

Compute- and network level virtualization

Tllech

- Re-use of cloud and mobile technologies (software and hardware)
- Unified, feature-rich and dynamic software platform for faster development

Virtualization

Moore's Law Alive and Well Heterogeneous Multi-Core

Hardware Supported Virtualization at Chip Level Possible

Thin Software Hypervisor

Automotive Systems Need To Become Fail-Operational

Driver takes over control

Driver needs some time to be prepared for take-over

- System is no longer fail-safe
- Fail-operational behavior for at least a limited time is required

or System needs to reach safe state

Reaching a safe state is a limited function that can be automated

Driverless Cars:

90 Percent Done,

90 Percent Left To Go

Sacha Arnoud, director of engineering at Waymo (Google)

Audi RS 7 piloted driving concept @ Hockenheim Ring

© Audi Germany, https://www.youtube.com/ watch?v=eOYsI1cqUrw

Trech

Vienna, Austria (Headquarters)	USA	Japan	China
Phone +43 1 585 34 34-0 office@tttech.com	Phone +1 978 933 7979 usa@tttech.com	Phone +81 52 485 5898 office@tttech.jp	Phone +86 21 5015 2925-0 china@tttech.com

www.tttech.com