SBA NIST

Research MmmM

Combinatorial Methods for
Testing and Analysis of Critical
Software and Security Systems

Rick Kuhn, Dimitris E. Simos and Raghu Kacker

National Institute of Standards and Technology, USA
SBA Research, Austria

Overview

. Intro, empirical data and fault model

. How It works and coverage/cost
considerations

. Critical Software - examples
. Security systems - examples

NIST

Matienal Institute of
Stondords ond Technology

What is NIST and why are we doing this?

 US Govt agency Research on measurement and test methods
3,000 scientists, engineers, and staff including 4 Nobel laureates

e Project goal — improve cost-benefit ratio for testing
Tools used in > 1,000 organizations, especially aerospace

ARLINGTON
U.S. AR FORCE

Carnegie s
GEU GE ATM Me]lon ' ’) S m
UHIUEHSIT?‘ UIliVEl‘Sity _—)
R LOYOLA E A ST

CAROLINA

UNIVERSITY MARYLAND
UNIVERSITY

S0A @DALLAE
Research

UMBC A P The Johns Hopkins University LOCKHNEE ' ..W
Applied Physics LA Weneverforget who we're working for™ =

Why combinatorial methods?

Produce effectively exhaustive testing and lower cost

« Examples of improving test efficiency 10X to 700X

« Case studies, including Adobe, Avaya, Daimler AG,
Jaguar Land Rover, Lockheed Martin, Rockwell
Collins, Siemens, US Air Force, and many others

Unique advantages for cybersecurity testing
New methods of solving the test oracle problem

Ways to measure test thoroughness and residual risk

Applications

Software testing — primary application of these methods
* functionality testing and security vulnerabilities
* approx 2/3 of vulnerabilities from implementation errors

Modeling and simulation — ensure coverage of complex cases

* measure coverage of traditional Monte Carlo sim
e faster coverage of input space than randomized input

Performance tuning — determine most effective combination
of configuration settings among a large set of factors

>> systems with a large number of factors that interact <<

What is the empirical basis?

* NIST studied software failures in 15 years of
FDA medical device recall data

* What causes software failures?
* |ogic errors? calculation errors? inadequate|
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

How are interaction faults distributed?

* Interactions e.g., failure occurs if
pressure < 10
pressure < 10 & volume > 300

pressure < 10 & volume > 300 & velocity =5

(1-way interaction)
(2-way interaction)
(3-way interaction)

* Surprisingly, no one had looked at interactions > 2-way before

100

90

80

70

50

40

% detected

30

20

10

C

60

AN
96% of faults cause
iInteractigns
\\
65% of faults qaused by

S

fact

r

Interaction

by single factor or 2-way

ingle

Interesting, but that's
just one kind of
application!

Server

Cumulative percent of faults

B] N ———

" / - T These faults

ol A 7 more complex
o L7 ' than medical
ol /- device

01—/ software!!

40

e Server

30

20 Why?

10

1 2 3 4 5 6

Number of parameters involved in faults

NIST

Natienal Institute of
Stendords ond Technology

Browser

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

g
,I / L= "
’ yaya
yalds
y e /
’ /.

- o e o FDA

e Server

e e Browser

2 3 4 5 6

Number of parameters involved in faults

Curves appear
to be similar
across a variety
of application
domains.

NIST

Natienal Institute of
Stendords ond Technology

NASA distributed database

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

Number of parameters involved in faults

N s =
II' T
77 /
””// Y _/
/ f ./
¥ /
V4
R/
//
s/
/
/
/
1 2 3 4 5

- o e o FDA

e e Browser

— . G

= e = « NASA DB

Note: initial
testing

but

Fault profile
better than
medical
devices!

NIST

Natienal Institute of
Stendords ond Technology

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

- o e o FDA

e e Browser

— e Server

= == == « NASA DB

MySQL

Number of parameters involved in faults

NIST

Natienal Institute of
Stendords ond Technology

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

- o e o FDA

e e« Browser

— e Server

= == == « NASA DB

NW Sec

MySQL

Number of parameters involved in faults

NIST

Natienal Institute of
Stendords ond Technology

Walit, there’s more

Cumulative proportion of faults fort = 1..6
100 ‘
_____________________ — |

S
60, // ///
NAVE
N4

207
10 ¢

—_—MySQL === MySQL2 = - = Apache2 = DSCS = NeoKylin

e Number of factors involved in failures is small
* No failure involving more than 6 variables has been seen

Cumulative percent of faults

10004

20.00

ED.DD

Fo.00

&0.00

S0.00

40.00

10.00

20.00

10.00

0.00

Average (unweighted)

Average proportion of faults for t=1..6

A

-~

P

k. 4 5

N

MNumber of interacting factors

NIST

Natienal Institute of
Stendords ond Technology

What causes this distribution? .z

Proportion of t-way conditions in branch
statements

——

!
[
=]

Y=}
[}

]
]

Cumulative percent of faults

[=] L = Ln i e |
]]]]]]

—
= o]

|

Murnber of interacting factors

One clue: branches in avionics software.
7,685 expressions from If and while statements

Comparing with Failure Data ez

Branch conditions vs. failure conditions BranCh
Statements

100

/ //
-7 //
N4
10 /

1 . 3 1

e Distribution of t-way faults in untested software seems to be similar
to distribution of t-way branches in code
e Testing and use push curve down as easy (1-way, 2-way) faults found

How does this knowledge help?

Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
(Within reason - we still have value {Still no silver bullet

propagation issues, equivalence — but validated on

L I
partitioning, timing issues, real systems!
more complex interactions, .. .)

Overview

. Intro, empirical data and fault model

. How it works and coverage/cost
considerations

. Critical Software
. Security systems

NIST

Matienal Institute of
Stondords ond Technology

Design of Experiments - background

Key features of DoE
— Blocking
— Replication
— Randomization

— Orthogonal arrays to test interactions between factors

Test

© 00 N O O b WO DN P

-U

W W W NN DNNNDN PP PP

T
N

W NN P WONN PP WDN P

T
w

N W W, NP DN W

Each combination
occurs same number
of times

Example: P1, P2 =1,2

NIST

Haotienal Institute of
Standards and Technoelogy

Orthogonal Arrays for
Software Interaction Testing
Functional (black-box) testing
Hardware-software systems

|dentify single and 2-way combination faults
Early papers

Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T
Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

NIST

Haotienal Institute of
Standards and Technoelogy

NIST

Matienal Institute of

What’s different about software? sk

Traditional DoE

e Continuous variable results
e Small number of parameters

e |nteractions typically increase
or decrease output variable

DoE for Software

e Binary result (pass or fail)
e Large number of parameters

e |[nteractions affect path
through program

Does this make any
difference?

ﬂ

How do these differences affect
Interaction testing for software?

Not orthogonal arrays, but Covering arrays: Fixed-value
CA(N, vk, t) has four parameters N, k, v, t : It is a matrix
covers every t-way combination at least once

Key differences

orthogonal arrays: covering arrays:
e Combinations occur « Combinations occur
same number of times at least once
e Not alanS Dossib|e to . AIWﬂVS DOSSib'G to find for a
find for a particular particular configuration
configuration « Size always < orthogonal
array

NIST

Hatienal Institute of
Standards and Technelogy

Let’s see how to use this in testing.
A simple example:

= 1
Font
Font Character Spacing | Texk Effects
Eont: Fonk style: Size:
Times Fegular 1z
Times | |Regular g |
Times Mew Roman | Tkalic 9 (o
Trebuchet M3 Eiold 10
Tww Cen MT v 12 hd
Font color: _ Underline skyvle:
Butomakic | | (nong) L
el————
/ [] strikethrough [] shadowe [] 5mall caps
[] Double strikethrough [] &ll caps

|:| Superscripk
[] subscript
Prey
e —

[]Emboss
|:| Engrave

[] Hidden

Times

Defaulk, ..

This is a scalable printer Font, The screen irnage maw not ratch printed output,

k.

] [Cancel

oThere are 10 effects,
each can be on or off

+All combinations is 210
= 1,024 tests

What if our budget is
too limited for these
tests?

oInstead, let’s look at all
3-way interactions ...

NIST

Maotional Institute of
Standards and Technelogy

How Many Tests Do We Need?

e There are [1?9] =120 3-way interactions.

« Each triple has 23 = 8 settings: 000, 001, 010, 011, ...
e 120 x 8 =960 combinations

o Each test exercises many triples:

4 \

0110000110
\YJ\Y/H,—/ -

Y

[OK, OK, what’s the smallest number of tests we need?gﬂ

A covering array of 13 tests

All triples in only 13 tests, covering [1:,9] 23 =960 combinations

. T | Each column is
Eachrowisatest [0[0][0J0OJ0J0O]0OFO]|O][0O] a parameter:
11T | 1 b1 : T[1 |1 :
L[1]1|0l1}p0|0)0 0T B
SRR OO B
‘61l do|o|1|ofo]1lO ,,
(0|0 [1y0|1|0|1¢d[1]|0O] < = \)
(1]1|0x1|0opoj1jo|1]0 B Ban O
ololo|1]1}1|0ofO]|1 |1y = —
0jol1|1|0|0f1]|0]O]1 ————
0|10y 1|1|o|o¢i|0]|0O;
1{olo|lo|o|lo|o|1]|1]1
o|l1|o|0]jo}p1|1]1]|0]1

 Developed 1990s
e Extends Design of Experiments concept
* hard optimization problem but good algorithms now NIST

Natienal Institute of
Standards ond Technology

Larger example - testing inputs,
combinations of variable values

Suppose we have a system with on-off switches.

Software must produce the right response for any
combination of switch settings

Mational Institute of
Standards and Technology

How do we test this?

34 switches =23%=1.7 x 1019 possible inputs = 17 billion tests

Mational Institute of
Standards and Technology

What if no failure involves more than 3 switch
settings interacting?

34 switches = 17 billion tests
For 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

Mational Institute of
Standards and Technology

Will this be effective testing?

100

90

80

70

60

50

40

30

20

10

Cumulative propW
£\ -

-

33 tests for this
(average) range
of fault detection

—— 85 tests for this

Yy A

(average) range
of fault detection

That’s way

better than 17

billion!

Number of factors involved in faults

- am e

Browser
MySQL2

3

Server

— - = Apache2

4

e NW Sec

NeoKylin

£3

smaller test sets

. (there is no universal best covering array algorithm)

Performance of NIST ACTS tool

On average NIST ACTS is faster than other tools, generating

NIST ACTS ITCH (IBM) |Jenny (Open Source)| TConfig (U. Ottawa) TVG (Open Source)
o Size Time | Size Time Size Time Size Time Size Time
2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
4 1363 3.05 1484 5400 1536 3.54 1476 >21 hour 64696 127
5 4226 | 18s NA | >lday | 4580 | 43.54 NA >1 day 313056 | 1549
6 10941 | 65.03 NA >1 day | 11625 470 NA >1 day 1070048 | 12600
Times in seconds
Traffic Collision Avoidance System (TCAS): 273241102
12 variables: 7 boolean, 2 3-value, 1 4-value, 2 10-value
NIST

Motional Institute of

Stendards and Technology

An Efficient Design of the IPO Algorithm

Fast In-Parameter-Order (FIPO) Algorithm
Low-level optimizations:

« Memory optimizations
+ Compile-time specialization

» Array representation

FIPO
Optimization | Baseline Simultaneous Skip Partitioned All
Complexity Reduction v v
Skip fully v v
covered combinations
Search space pruning v v

High-level optimizations for FIPO variants

SBA

Research

FIPO benchmarks

10 e

N [POG-ACTS

s FIPOG-Baseline
B FIPOG-Simultaneous
s FIPOG-Partitioned
B FIPOG-AII

Speedup (larger is better)

40
\Y

FIPO benchmark using a CA(N;t=3,k=6,v) versus IPO implementation
In the ACTS tool (speedups relative to baseline)

SBA

Research

New Algorithms Developed

Quantume-inspired
evolutionary algorithms

Approaches using symbolic
computation

Neural networks and

Boltzmann machines for CA
generation

SBA

Research

However: 10]
* coverage increases 03
0.8 4

rapidly 007!

How many tests are needed?

Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

for 30 boolean variables ~ £°¢
33 tests to cover all ol

3-way combinations 031
0.2
but only 18 tests to 01l
0 ;o A S S S U D DU D R S SN N N BN
Cover abOUt 95/0 Of D.E‘E' 2 4 & 'S 1E' 12 14 16 13 EI} 22 24 26 28 3|} 32 34

Test

3-way combinations

Testing inputs — combinations of
property values

Suppose we want to test a find-replace function with only two
inputs: search_string and replacement_string

How does combinatorial testing make sense in this case?

Problem example from Natl Vulnerability Database:
2-way interaction fault: single character search string in
conjunction with a single character replacement string, which

causes an "off by one overflow"

Approach: test properties of the inputs

Some properties for this test

String length: {0, 1, 1..file_length, >file length}
Quotes: {yes, no, improperly formatted quotes}
Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}
Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

This is 213442%= 2,592 possible combinations of parameter
values. How many tests do we need for pairwise (2-way)?

We need only 19 tests for pairwise, 67 for 3-way, 218 for 4-way

Testing Smartphone Configurations

Some Android configuration options:

int HARDKEYBOARDHIDDEN_NO;

int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO;

int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;

int KEYBOARD_12KEY;

int KEYBOARD_NOKEYS;

int KEYBOARD_QWERTY;

int KEYBOARD_UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAY,;

int NAVIGATION_TRACKBALL;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL,;

int ORIENTATION_LANDSCAPE;

int ORIENTATION_PORTRAIT;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT_LONG_MASK;

int SCREENLAYOUT_LONG_NGO;

int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;

int SCREENLAYOUT_SIZE_LARGE;

int SCREENLAYOUT_SIZE_MASK;

int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;

int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER,;

int TOUCHSCREEN_NOTOUCH;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

NIST

Haotienal Institute of
Standards and Technoelogy

Configuration option values

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 5
WHEEL
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

3x3x4x3x5x4x4x5x4=172,800 ':‘"S'-

Standards and Technoelogy

Number of configurations generated for t-way

Interaction testing,t = 2..6

t # Configs |% of Exhaustive

2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

NIST

MNotional Institute of
Standards and Technoelogy

ACTS - Defining a new system

New System Form

| Parameters | Relations || Constraints

System Name TCAS

Svysbem Parameter

Pararmeter Mame |

Parameter Type | Boolean

Farameter Values

Selected Parameter Boolean |

Simple Value |

i)

Fange Yalue | i | |

| AddtoTable |

Saved Parameters

Faramater Mame

Cur_Mertical_Sep
High_Confidence
Twio_of_Three_Reports
Cvwn_Tracked_Alk
Other_Track_Alt
Cwn_Tracked_Alt_Rate
Alk_Layer Malue
Up_Separation
Dawn_Separation

Parameter Yalue
[299,300,601]
[true,False]
[true,false]

[1,2]
[1,2]
[&00,601]
[0,1,2,3]

[0,39%9,400,499,500,639,640,7...
[0,399,400,499,500,639,640,7...

Add Syskem H Zancel

Other RAC [MO_INTENT,DO_NOT_CLIME, ...
Cther_Capabiliky [TCAS_CA, Other]
Clirnb_Inhibit [true,fFalse]
< >
Remove ” Modify
Naotional Institute of

Standards ond Technology

Variable interaction strength

New System Form

X

Farameters

Strength

DEher Track Al
Cuan_Tracked_alk_Rate
alk_Layer_Value
Lp_Separation

Down. Separakion
Other RAC
Cther_Capability
Clirnb_Inhibit

|Cur_'-.-'ertin:al_Sep | |4

Two_of_Three_Reports
Cuan_Tracked_alk

Pararnaker Marmes

Cur Merbical “Sep,High' Confidence, Two-of .
Alk_Layer_Yalue,Up_Separation,Down_Sepa... 3

Strength

NIST

Natienal Institute of
Standards ond Technology

cConstraints

Medily Smtem

ﬂ--:m:l.n-l Rokibares | Conabonis |

“athe didde s Doralracs
Fui‘}l—!—:--::-'.'.— :-—Iﬁh il ==1 */-%%+ Loaess i
Torrtra- Frkloe
-.l.h.'- | Aurkd Dotort sl -. |m-':.;:-';'|-.-..'

Lazd Fran ~ie

NIST

National Institute of
Standards ond Technology

Covering array output

B FireEye 1.0- FireEye Main Window

System Edit Operations Help
I : | 1o : A, :
3 & H._ & Algorithm | TPCIG w| stength (2 v| @
e | Test Result |]]G‘ Statistics | %
I - R B DS e et B b e O A Dk e e S e o S s D e L R i sl el
. * CUR_t... | HIGH_... | Two_... | own_.. |otHeR...| own_... | aT L. |up_sE... | pown... | oTHE... | oTHER... | cLmB.
215 Cur_vertical_Sep 1 299 krue krue 1 1 £00]] NO_INT... TCAS_TA true
@ 700 2 300 False False 2 z &01 1 0 399 DO_NO... OTHER false
& 300 3 eod brue False 1 z 600 z 0 400 DO NG, OTHER true
& &0l 4 |zo9 False brue z 1 B01 3 i} FI=T DO_NO... TCAS_TA false
P ! 5 |300 False brue 1 1 &01 i} i} 500 DO NG... OTHER brue
=) High_Confidence
% e & |s01 False true 2 2 600 1 0 639 MO_INT... TCAS_TA False
@ False 7 |ze9 False False 2 1 601 2 0 G40 MO_INT... TCAS_TA true
g 300 brue False 1 z 600 3 0 739 MO_INT... OTHER Ffalse
=5 Two_of_Three_Report:
% e g |eo1 brue False 2 1 &01 i} 0 740 DO NC... TCAS_TA true
@ False m |ze9 brue brue 1 z &00 1 0 0 DO_NG... OTHER false
11 |zo0 False brue 1 z &00 z 399 i} DO NG... TCAS_TA false
=14 Cwen_Tracked_Alt
1 1z |eot true False z 1 601 3 399 309 DO_NG... TCAS_TA true
.2 13 |299 False true 2 1 601 0 399 400 MO_INT... OTHER False
S-£3) Other Tracked Ak 14 |30 brue False 1 z 600 1 399 499 DO_NG,.. OTHER true
o 1 15 a1 brue False 2 2 &00 2 399 500 DO NO... TCAS Ta false
%2 16 |z99 brue False 1 1 B01 3 399 £39 DO_NG... OTHER true
5 Own_Tracked_alt_Rate 17 |zo0 brue brue 1 = &00 0 399 Gl DO_NG... OTHER false
& 00 15 a0t False brue z 1 &01 1 399 739 DO_NG... TCAS_TA true
& &0t 19 |z99 False true 1 2 600 2 399 740 MO_INT... OTHER False
- | 20 [300 False False 2 1 601 3 399 540 MO_INT... TCAS_TA true
S Alk_Laver_Walue =]
0 [21 Jem brue False 2 1 B01 1 400 0 DO_NO... OTHER true
P 2z |zo9 False brue 1 z &00 0 4000 399 MO _INT... TCAS_Ta false
&2 i |ao0 #* #* #* # # 3 400 400 DO NG, TCAS_TA *
3 EL * * i N B 2 400 409 MO_INT... * *
&£ Un_separatian —Ill 25 |z99 * * * * # 1 400 500 MO _INT... # *
L....._D 26 1300 N i i : B 0 400 £39 DO_NO.., * G
o 399 27 |e01 i i B ! * 3 400 B0 DO_NO,,, * *
& 400 28 |z99 * * * * * 2 400 739 DO N, *
& 400 o |300 #* #* #* i # 1 400 740 Do NG, *
@ 500 30 |so1 B * * * * 0 4000 40 Do Mo, * * ¥
& &30 | 51 |zo brue brue 1 1 &00 3 490 i} MO_INT... OTHER true
DR Il 32 l=zo0 False False 2 2 01 2 494 3949 Do MO, TCAS TA False ™
| > < | 3

NIST

Mational Institute of

Standards ond Technology

Output options

Mappable values

Degree of interaction

coverage:
Number of
Number of

P OMNMNMNPFPOMRPFPODMRERDO
RPROOOKFRRKFRHFHFKFRORKDO
cokrRrRrRRPRPROOORKRHRKRDO
ocoproOoOrPrORKrRrRORKrRDO
PrRPORPROROORHKHEDO
ocopRrOoORrOoOmrPEromro
NRFRPOWMNRFROWDMNMRKEDO
H OO O0O0OO0OO0O0OO0O0OO0o0OOo
OCwVWwWouJdJoyUldWDNDBEHE O
P NPFPOOODMEKEDMNMNRKERDO
oOroOoOroomromrmro
PRk RPORFRPRORPROKRPROHRKRDO

Etc.

2

parameters:

tests:

100

12

Human readable

Degree of interaction coverage: 2
Number of parameters: 12

Maximum number of values per
parameter: 10

Number of configurations: 100

Configuration #1:

= Cur_Vertical Sep=299
High Confidence=true

Two _of Three Reports=true
Own Tracked Alt=1

Other Tracked Alt=1

Own Tracked Alt Rate=600
Alt_Layer;Value—O
Up_Separation=0

9 = Down_Separation=0

10 = Other RAC=NO_ INTENT
Other Capability=TCAS CA
12 = Climb Inhibit=true NIST

o JoUld WN R
I I

[}
=
I

Haotienal Institute of
Standards and Technoelogy

CAGen: A FIPO webUI tool

CAgen
tls-example-model |nput Parameter Model

Workspaces f MName Values Cardinality

Input Parameter Model B scenario a,b,c 3
protocol tls, ssl, dtls 3

Generate o 4
authenticate true, false 2
retries 01234 5
payload 1,2 345,46 &
implementation OPEN_S5L, GNU_TLS 2
+ Add Type -

Help ?

About i

Downloads X

@ SBA Research 2017-2018 | All Rights Reserved.

SBA

Research

CAGen: Array Generation

*
Array Generation
— E
TEST SET
o t=1 6rows Randomize Don't-Care Values Show model values Export.. =
scenario protocol authenticate retries payload implementation
a tls true 0 1 OPEM_S5L
b ssl false 1 2 GNU_TLS
c dtls 0 2 3 0
0 0 0 3 4 0
0 v 0 4 5 0
0 0 0 0 & 0

Showing rows 1-6

SBA

Research

Available Tools

Covering array generator — basic tool for test input or
configurations;

Input modeling tool — design inputs to covering array
generator using classification tree editor; useful for
partitioning input variable values

Fault location tool — identify combinations and sections of
code likely to cause problem

Sequence covering array generator — new concept; applies
combinatorial methods to event sequence testing
Combinatorial coverage measurement — detailed analysis of
combination coverage; automated generation of supplemental
tests; helpful for integrating c/t with existing test methods

NIST

MNotional Institute of
Standards and Technology

ACTS Users > 3,000 organizations

Telecom||

Defense

Information
Technology

2 Airlines

W Defense/govt
O Electrenics

O Finance

W Video games
@ HVAC

BT

O Language

m [ied/pharma
B Retaill'sales
O Telecom

O Transportation

NIST

rmuronal Institute of
Standards ond Technology

Overview

. Intro, empirical data and fault model

. How It works and coverage/cost
considerations

. Critical Software
. Security systems

NIST

Matienal Institute of
Stondords ond Technology

Case study example: Subway control system

Real-world experiment
by grad students, Univ.
of Texas at Dallas

Original testing by
company: 2 months

Combinatorial
testing by U. Texas
students: 2 weeks

Result: approximately
3X as many bugs found,
In 1/4 the time

=> 12X improvement

Results

Number of Number of | _. _ o
test cases bugs found Did CT find all original bugs?
Original 08))
Package 1
CT 49 6 Yes
Original 102 1 _
Package 2
Sl /7 5 Yes
Original 116 p) _
Package 3
Sl 80 / Miss 1
Original 122 2 _
Package 4
CT 90 4 Yes

loT example — smart house home assistant

dc 8b 28
4fc6 2b

Philip

82 80 3e

Plant8

Plant3 Plant7 yr Symbol Planté

Plant9 Plant4 Plant2

AAIABOIAIOLSIOOIGIOIOTIOIOIO0

bcddc2 Plant12 Plant11

Cloudine...

<—Sensors

yr Plant1 Plant5 Plant10

living_space
¥ livingroomlights
¥ hallwaylights

¥ ServerLEDs

YA 4 4

- . -

sound system

Off

<16——Group

)

Switch
not_important ‘;)
¥ kitchenlights D /
¥ bedroom lights D /
¥ bathroomlights D /
¥ livingroomlights D /
¥ halwaylights D /
£ coneriEne R

NIST

MNaotional Institute of
Standards and Technology

kitchen_devices »
¥ «itchenlights T ¥
¥ waterboiler T ¥

others »
¥ «itchenlights D /
¥ bedroom lights YO
¥ bathroomlights D

Automations —>| =

cinema »

¥ videoPC »

sound system
Off

0]

Automation)]

Soundsystem to TV input

=, TurnonlightswhenatF
Do you want to save this login?

NO THANKS T\ Relejl\]

= Switch from be to pc

=, Switch to nintendo

Research

Configuration testing for an IoT device

switch = {on, off}
automation = {on, off}

separate systems:
media_player = {
is_volume_muted = {True, False}
sound_mode = {'MUSIC", '"MOVIE', 'GAME', 'AUTO’,
'"VIRTUAL' , "PURE DIRECT ', 'DOLBY DIGITAL",
'DTS SURROUND' , '"MCH STEREO' , 'STEREO"
"ALL ZONE STEREO'}
source = {'AUX', ’'Blu—ray ', 'CBL/SAT','CD', 'DVD",
'"FM' , " Favorite S1'," Favorite S2'",
"Favorite S3',"Favorites ', "Flickr ',
"Internet Radio', Last.fm', '"MEDIA PLAYER',
'Media Server ', 'NET', ' Spotify ', 'TV'}
volume_level = {—-1,0,1,99,100,101}
state = {on, off}

}
group = {
switchl = {on, off}
switch2 = {on, off}
}
NIST SBA

S anak e o Research

Setting parameters of 10T sensors viaCT

switchOOkitchen lights automationOOmusic_mode media player00sound system groupOOliving space switchOOliving_room lights
turn_off trigger clear playlist [emaove turn_off

Test execution

@ header describes device and its domain (domainOOdevice_name)

@ first column gets translated to following request:

https://home—assistant —domain/api/services /switch/turn_off

@ which is sent as post request with the following json struct:

{"entity_id" :"switch. kitchen_lights"}

kitchen lights Y ¥
¥ kitchenlights D
B switch.kitchen_lights on friendly_name: kitchen lights

assumed_state: true

NIST SBA

S anak e o Research

Research question — validate interaction rule?

DOCUMENT

LINK ANCHOR

FORM

TEXT
SELECT
RADIO OPTIONS

CHECKBOX BUTTON
TEXTAREA RESET

PASSWORD SUBMIT

DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

NIST developed conformance
tests for DOM

Tests covered all possible
combinations of discretized
values, >36,000 tests

Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

NIST

Maotional Institute of
Standards and Technelogy

Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12 Load 3 24
Blur 5 24 MouseDown 15 4352
: MouseMove 15 4352
elicl Lol E Y T 15 4352
Change 3 12
. MouseOver 15 4352
dblClick 15 4352
: MouseUp 15 4352
DOMACctivate 5 24 M Wheel 14 1024
DOMAttrModified 8 16 Rouste ee 5 -
DOMCharacterDataMo 8 64 es_e
o Resize 5 48
dified Scroll 5 48
DOMElementNameCha 6 8 cro
Select 3 12
nged Submit 3 12
DOMPFocusin 5 24 T“ 'Im' : o
DOMFocusOut 5 24 Ue>|‘t ”g“t : =
DOMNodelnserted 8 128 thoal 15 4096
DOMNodelnsertedintoD 8 128 T teleT - 36626
ocument otal 1ests
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Focus 5 24 . NE
KeyDown 1 17 equivalence class values _
Hotlonal Instifute of
KeyUp 1 17 Stondards and Technology

Document Object Model Events

Combinatorial test set:

Test Results

t Tests : .
Orig. Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27

1818 4.96% 437 72

5 2742 7.499% 908 72

6 4227 1];)'54 1803 72
Yo

All failures found using < 5% of
original exhaustive test set

e =~~m=c 3N

~ 6 =D

100

g0

&0

o

&0

50

40

30

20

10

s 3 4 5 5
Interaction strenagth
Med. Dev. Broweer
..... S‘EF‘IEF PR N_JEIE.A
I NW Sec — ——-DOM

Hatienal Institute of
Standards and Technelogy

Modeling & Simulation

1. Aerospace - Lockheed Martin —
analyze structural failures for
alrcraft design

2. Network defense/offense
operations - NIST — analyze
network configuration for
vulnerability to deadlock

Hatienal Institute of

Problem: unknown factors
causing failures of F-16 ventral fin

LANTIRN Pod
Location

: Ventral Fin A04-14639006
Figure 1. LANTIRN pod carriage on the F-16.

It’s not supposed to look like this:

A04-14639001
Figure 2. F-16 ventral fin damage on flight with LANTIRN

Can the problem factors be found efficiently?

Original solution: Lockheed Martin engineers spent many months with
wind tunnel tests and expert analysis to consider interactions that could

cause the problem
Combinatorial testing solution: modeling and simulation using ACTS

Parameter Values

Aircraft 15, 40

Altitude bk, 10k, 15k, 20k, 30k, 40k, 50k

hi-speed throttle, slow accel/dwell, L/R 5 deg
side slip, L/R 360 roll, R/L 5 deg side slip, Med
accel/dwell, R-L-R-L banking, Hi-speed to Low,

Maneuver 360 nose roll

Mach (100t) 40, 50, 60, 70, 80, 90, 100, 110, 120

Results

Interactions causing problem included Mach points .95
and .97; multiple side-slip and rolling maneuvers
Solution analysis tested interactions of Mach points,
maneuvers, and multiple fin designs

Problem could have been found much more efficiently
and quickly

Less expert time required

Spreading use of combinatorial testing in the
corporation:
e Community of practice of 200 engineers
* Tutorials and guidebooks
* Internal web site and information forum

Example: Network Simulation

. “Simured” network simulator
. Kernel of ~ 5,000 lines of C++ (not including GUI)

- Objective: detect configurations that can
produce deadlock:
. Prevent connectivity loss when changing network
. Attacks that could lock up network

- Compare effectiveness of random vs.
combinatorial Inputs

- Deadlock combinations discovered

- Crashes in >6% of tests w/ valid values (WIin32

version only) NIST

Hatienal Institute of
Standards and Technelogy

Parameter Values
1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

Simulation Input Parameters

BHX3XAXAXAXAX2X2
X2XAXAXAx4x4

= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

NIST

Hatienal Institute of
Standards and Technelogy

Network Deadlock Detection

Deadlocks
Detected:
combinatorial

1000 2000 4000 3000

t Tests 500 pkts pkts pkts pkts pkts
2 28 0 0 0 0 0
3 161 2 3 2 3 3
4

752 14 14 14 14 14

Average Deadlocks Detected.:
random

1000 2000 4000 8000
Tests 500 pkts pkts pkts pkts pkts
28 0.63 0.25 0.75 0. 50 0.75
161 3 3 3 3 3
752 10.13 11.75 10.38 13 13.25

A W N ~

NIST

Maotional Institute of
Standards and Technelogy

NIST

Matienal Institute of

Network Deadlock Detection ™™=

Detected 14 configurations that can cause deadlock:
14/ 31,457,280 = 4.4 x 10/

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:

 accidental deadlock configuration: low

 deadlock config discovered by attacker: much higher
(because they are looking for it)

Event Sequence Testing

e Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

* Failure reports often say something like: 'failure
occurred when A started if B is not already connected'.

* Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Event | Description
a connect range finder

connect telecom

connect satellite link

connect GPS

connect video

—~ | D | Q| O | T

connect UAV

Sequence Covering Array

* With 6 events, all sequences = 6! =720 tests

* Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

e Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

a b c d e f
f e d C b a
d e f a b C
C b a f e d
b f a d C e
“ e C d a f b
a e f C b d
“ d b C f e a
“ C e a d b f NIST
f b d a e C smat i

Sequence Covering Array Properties

e 2-way sequences require only 2 tests (write in any order, reverse)
e For > 2-way, number of tests grows with log n, for n events
e Simple greedy algorithm produces compact test set

» Application not previously described in CS or math literature

300

250 p—""

o /
TeStS / =4=2-way
150 == 3-way
== 4-Way
100
50 /
v e ——ag-——0——="

ol(’(:—'.o.o.o.o.o.o.

5 10 20 30 40 50 60 70 80

Number of events N&T

HNational Institute of
Standords ond Technology

Combinatorial methods and test
coverage

Review of some structural coverage criteria:
* Statement coverage: % of source statements exercised by the test set.

* Decision or branch coverage: % of branches evaluated to both true and
false in testing. When branches contain multiple conditions, branch
coverage can be 100% without instantiating all conditions to true/false.

* Condition coverage: % of conditions within decision expressions that
have been evaluated to both true and false. Note - 100% condition
coverage does not guarantee 100% decision coverage.

* Modified condition decision coverage (MCDC): every condition in a
decision has taken on all possible outcomes at least once, each
condition shown to independently affect the decision outcome, each
entry and exit point traversed at least once

A new perspective on test coverage

* Test coverage has traditionally
stronger @ been defined using graph-based
@ \ structural coverage criteria:

o e statement (weak)
@ * branch (better)

o where: ¢ etc.

e B brahconinconme & ¢ Based on paths through the code

BCC - Branch Condition Combination coverage
o DCT - AllC-usges coverage
v DPU - AlP-uzes coverage

DO - Al du-paths coverage
Wead ke r L - LCSAT coverage Wh t b t
LICDC - IModified Condition Decision coverage a a O u
= - Gtatement coverage h
the data?

Subsumption relationships of
structural coverage criteria

Combinatorial Coverage

combinations
covered

ac 00, 01, 10 75

bc 00, 11 .50
cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST

MNotional Institute of
Standards and Technology

Variable Variable-value Coverage
' combinations

covered

00, 01, 10

00, 11

00, 01, 10, 11

Rearranging
the table

acC

bc

00, 01, 10

00, 11

l

00, 01, 10

00, 11

bc

1 Coverage for fle
figl.cev
0.9 Total 2-way =0.792
: Cov>=000=66=100
Cov>=0.05=6/6=1.00
e Cov>=0.10=6/6=1.00
- Cov>=015=66=100
Cov>=020=6/6=1.00
07 Cov>=025=6%=1.00
' Cov>=030=66=100
Cov>=035=66=100
0.6 Cov>=040=66=100
@ Cov>=045=6%=1.00
= P Cov >=050=6%=100
g 05 . D Cov>=055=56=083
8 — Cov >=0.60=56=083
BLY Cov >=065=56=083
0.4 \ Cov >=0.70=56 - 0.83
Cov>=0.75=56=083
0.3 \ Cov>=080-2/6=-033
: Cov>=085=-26=033
Cov>=0.90=26=033
0.2 Cov>=095-2/6=033
' Cov>=100=2/6=033
— Fway
0.1 Iway
0
0.00 .10 0.20 0.30 1.40 0.50 0.60 0.70 0.80 0.90 1.00
0.05 015 225 0.35 245 0.55 0.65 (.75 {1.85 085

Combinations

Bottom line:
All combinations
covered to at

least 50%
NIST

Haotienal Instifute of
Standards and Technology

What else does this chart show?

Untested combinations

(look for problems here)

Tested combinations => code works for these

Spacecraft software example
82 variables, 7,489 tests, conventional test design
(not covering arrays)

1

il |
0.9 - L
L— L-.q---» L-----"
0.8 I | - L
I—p-— l-.- l-l---q
0.7 :
Il— w o s l tmes
0.6 i B - i
g l-—-h— ll--“.‘ k
& 05 L | N
(§ ll Ll L
T 2'\’1'3)' l_
04 - Ey 1.
LN J 4‘“"31,' ll a=3a L
- 5'\'1'3"
03 — Swa;' I
0.2
0.1
0
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.50 1.00
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Combinations

Additional coverage metrics

Relative Coverage Gain per Test

Class Race Weapon Shield Armor Gain

Warrior

SBA

Research

Application to testing and assurance

* Useful for providing a measurable value with
direct relevance to assurance

 To answer the question:
How thorough is this test set?
We can provide a defensible answer

Examples:

* Fuzz testing (random values) — good for finding bugs
and security vulnerabilities, but how do you know
you’ve done enough?

e Contract monitoring — How do you justify testing has
been sufficient? ldentify duplication of effort?

From t-way coverage
to structural coverage

t-way coverage ensures branch coverage (and therefore
statement coverage) under certain conditions

Branch Coverage Condition: 100% branch coverage for t-way
conditionals if M, + B, >1

Implications: we can achieve full branch coverage as a
byproduct of combinatorial testing, even without a
complete covering array

Does combinatorial testing produce good
structural coverage?

Experiment (Czerwonka)
* Statement coverage: 64% to 76%
* Branch coverage: 54% to 68%

* Both increased with t-way interaction
strength

* Diminishing returns with additional increases
In t.

Some different experimental results

Experiment (Bartholomew), phase 1
Statement coverage: 75%

Branch coverage: 71%

MCDC coverage: 68%

Experiment phase 2
Statement coverage: 100%
Branch coverage: 100%
MCDC coverage: 100%

Why? What changed?

* |nput model was changed

* Relatively little effort — 4 hours to get full
statement and branch coverage

* Ad hoc, application dependent changes

e MCDC coverage required more work, but
successful — 16 hours —and huge
improvement over conventional methods

* Can we generalize results, provide
guidance for testers?
* Next research area

How do we automate checking
correctness of output?

* Creating test data is the easy part!

* How do we check that the code worked correctly
on the test input?

* Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’)
- Easy but limited value

* Built-in self test with embedded assertions — incorporate assertions in
code to check critical states at different points in the code, or print out
important values during execution

* Full scale model-checking using mathematical model of system and
model checker to generate expected results for each input - expensive
but tractable

NIST

Motional Institute of
Shandards and Technology

NIST

Natienal Institute of
Standards ond Technology

Using model checking to produce tests

-

he system can never

get in this statel

At

o)

[4

Yes it can, ancﬂ\

here's how ..

)

System
source

mufavt
pecs

Y

generate
mutants

model

\ checker

conrfer-

examples

Complete
: Tests

Run

o Tests

i Cmnbine .scencx‘z’oi

sCcenarios

test

" results

generate
test input

fesf cases
TDA ..J

Black & Ammann, 1999

® Model-checker test
production:

If assertion is not true,
then a counterexample
IS generated.

® This can be
converted to a test
case.

Testing Inputs

o 1raffic Collision Avoidance
System (TCAS) module

« Used in previous testing research
« 41 versions seeded with errors

o 12 variables: 7 boolean, two 3-value, one 4-
value, two 10-value

« All flaws found with 5-way coverage

« Thousands of tests - generated by model
checker in a few minutes

NIST

Natienal Institute of
Standards ond Technology

2-way.
3-way:.
4-way:
S-way:
6-way:

Tests generated

Test cases
156

461

1,450
4,309
11,094

NIST

HNaotienal Institute of
Standards ond Technology

Tests

12000

10000

8000

6000

4000

2000

2-way

1 1

3-way

4-way

5-way

6-way

Results

* Roughly consistent with data on large systems

NIST

HNaotienal Institute of
Standards ond Technology

 But errors harder to detect than real-world examples

100%
80%
60%
40%
20%

0%

Detection Rate for TCAS Seeded

Errors

2

/1/‘

i

¥

—e— Detection
rate

Fault Interaction level

2way 3way 4 way 5way 6 way

Tests

350.0
300.0
250.0
200.0
150.0
100.0
50.0
0.0

2way 3way 4way Sway 6way

Tests per error

/

/ —&— Tests per error

)

i

9/?/

Fault Interaction level

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

New approaches to oracle problem

Pseudo-exhaustive
testing solution using
covering arrays:

Convert conditions/rules In
requirements to k-DNF form

Determine dependencies

Partition according to these
dependencies

Exhaustively test the inputs on
which an output is dependent

Detects add, change, delete of
conditions up to k, large class
of errors for conditions with m
terms, m > k

Two layer covering arrays -
fully automated after definition
of equivalence classes

« Define boundaries of
equivalence classes

« Approx half of faults detected
with no human intervention

« We envision this type of
checking as part of the build
process; can be used in parallel
with static analysis, type
checking

SBA -
Research OverV| EW

1. Intro, empirical data and fault model

2. How 1t works and coverage/cost
considerations

3. Critical software
4. Security systems

NIST

HNaotional Institute of
Stondords ond Technology

Combinatorial Security Testing

Large scale automated software testing for security
« Complex web applications

* Linux kernels

* Protocol testing & crypto alg. validation

« Hardware Trojan horse (HTH) detection

Combinatorial methods can make software security testing
much more efficient and effective than conventional approaches

Library Functions

KAT_AES
100
t= System Calls
— =3
S
75 \
: |
5 |
g e ,a
: J
© v w v v v ./'
% . . . System Calls "
\\‘\'\;._/I
i Library Functions S B
T T A

Research

Web security: Models for vulnerabilities
Cross-Site-Scripting (XSS): Top 3 Web Application Security Risk

+ Inject client-side script(s) into web-pages viewed by other users

« Malicious (JavaScript) code gets executed in the victim’s browser

t;u;t.hery ‘ -
l]l(l':-" “l\\'i“(‘l'.('()l’n, Zzap=(a "onmouseoy ' You TUhe
§ er="alert('uh oh")"/
I‘ ' e < H 0. ™
/
r e ‘ crpt>®_MTUL_FUNCTIONT«h s cmargues = <font colar=Ted =y dymatun Wan
3 n Zzap rere<apts
= &
' = 3%t wmm—r Post

Difference from Classical CT: Modelling Attack Vectors

« Attacker injects client-side script in parameter msg:
http://www.foo.com/error.php?msg=<script>alert(1)</script>

SBA

Research

Sample of XSS and SQLIi vulnerabilities found

W3C
Tidy your HTML

An error (I/O error: 403 Access to url '" autofocus onfocus="var h=document.getElamentsByTagName('head') [0];var s=document.creat=Element ('script');s.src="'http://www.sba-research.org/x.js';l
trying to get

Address of document to tidy:

1 indent

| enforce XML well-formedness of the results (may lead to loss of parts of the originating document if too ill-formed)

get tidy results

Stuff used to build this service e

Message from webpage

+ tidy
: —xm!:,']lgrtl‘(f:‘; ae é;:g’r‘:?g XML woll-formedness) é This is remote text via t.js |ocated at SBA Server

See also the underlying Python script.
script $Revision: 1.22 $ of $Date. 2013-10-21 12:13:33 $

by Dan Connolly
Further developed and maintained by Dominique Hazael-Iassieux

Keha) Y MARC subfiel - =55
€ Koha s Administration . % | g 3. Execute payload 1. Send pay'oad
&) Ous ploprasd.f sstintypeceds £ vha-retanrch org/s (1> Atagidn000 ¥ X | @ (@Y Google afte $ & = (
2. Send response
Browser Oracle XSSlInjector SUT
E—)m—_—) Web Application
Database

A

Remote text via x.is located at a S8A Server.
Wiinerabiity Disclosure by Combinatorial Security Testing Group -
Contact: cst@sba-research org

Configuration
File

SBA

Research

Security Protocol Testing

Input universe —
P Invalid inputs

\ Well-formed

A\) inputs
+ X

5 U P
Security protocol - g
implementation

iiiniasics e Abnormal behaviors

-
r-

May expose

vulnerabilities

X.509 certificates for TLS

e Used during TLS handshake to authenticate communication
partners

e Usually only the server sends its certificate

e Faults in validation code can result in MITM and related
impersonation attacks

=

company x’s
web server

spoofed
security certificate
“I'm company x"

man in the middle
attacker

Figure: Schematic of an Impersonation Attack

SBA

Research

CoveringCerts: 2-way test set for certificates

Mandatory Block

Basic Constraint Extension Block

version hash key signature | active critical iIs_authority pathlen
0 md5 dsa self true false false 1
0 sha1 rsa unrelated false dummy dummy dummy
0 sha256 dsa parent true true true 0
1 md5 rsa unrelated true true false 0
1 shat rsa parent true false true 1
1 sha256 dsa self false dummy dummy dummy
2 md>5 rsa parent false dummy dummy dummy
2 shat dsa self true true true 0
2 sha256 rsa unrelated true false false 1
1 md5 dsa unrelated true false true 0
2 sha1 dsa parent true true false 1
0 sha256 rsa self false dummy dummy dummy

SBA

Research

Example: Test translation

Version = 2

Validity_Time = wvalid
Issuer = Chain

Key_Type = RSA
Signature_Type = Chain
Signature_Algorithm = SHA1
Ext_BC_enabled = 1
Ext_BC_critical = 0
Ext_BC_CA = 1
Ext_BC_pathlen
Ext_KU_enabled
Ext_KU_critical = n/a
Ext_Extended_KU_enabled = 0
Ext_Extended_KU_critical = n/a
Ext _unknown_enabled = 0

I
H

Ext_unknown_critical = n/a

Version: 3 (0x2)
Serial Number: 1 (0x1)

Signature Algorithm : shalWithRSAEncryption

Issuer: C=AU, ST=SBA, |=SBA, O=SBAR, OU=CST,
Ch=root/emailAddress=root@example. org
Validity
Mot Before: Jan 1 22:51:58 2017 GMT
Not After : Jan 1 22:51:58 2019 GMT
Subject: C=AU, ST=SBA, L=SBA, O=SBAR, OU=CST,
Ch=leaf/emailAddress=foo@example. org
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public—Key: (1024 bit)
Modulus :
00:b3:d6:02:77:2b:d1:a6:
[--]
ch:be:35:e3:74:20:4a:e1:11
Exponent: 65537 (0x10001)
X509v3 extensions:
Xb509v3 Basic Constraints:
CA:TRUE, pathlen:1

Signature Algorithm : shalWithRSAEncryption

7a:78:59:74:0b:Be:3f1:56:b4:3b:6e:ba:

SBA

Research

Errors observed for TLS implementations

600 T
Coveringoert | Intra Coveringcert | Intra
Coveringoert [Inter N Coveringeart [Inter HN
Coveringcen f Flat IS Coveringcert | Flat I
Frankencert EZZA &0 L Frankencert LED |
500 Mucer! pXEE - Mucert M
50 |-
400
g £ aol
a ¥
£ 300 &
: ;
a & 30 |
200 [
0 AL
A L
100 A LA L
wor A LA L
A b e L
o *aln? o AL gt el
=2 t=3 =4 =5 t=6 =7 Frankencert ucert t=2 t=3 t=4 =5 =6 =7 Framkenoert Muoert
test suite test suite

Error BouncyCastle wolfSSL GnUTLS NSS OpenJDK OpenSSsL mbed

untrusted v v v v v v v

expired or not yetvalid v v v v v v v
parse-error v v v v v X v

crash X v X X X X X

use of insecure algorithm X X v v X X v
invalid signature X W W v X X X
unknown critical extension X X X v X v X
extension in non-v3 cert X X X X v X X
use of weak key X X X X X X v

name constraint violation X X X / X X X
key usage not allowed X X X o X X X

SBA

Research

SCAs for browser fingerprinting

 |dentification of user browser can be used offensively/defensively
« Custom TLS handshakes are created using SCAs

« Classification based only on behavior analysis

Testing procedure

Complete set of Execution of test sequences Feature vector generaton Classification
test sequences from selected test set based on feature vectors

@ Firefox FV(Firefox) [ﬁ] Group 1

F(Internet Explorer)

* roLl
gf?:'j?grhae FV(Google Chrome) [:D [i'] o

Internet
Explarer

Selected subset

. Execution
for evaluation fram :

Edge

Microsoft L
Fv(Microsoft Edge) [‘ ’] Group N

@ Opera

FV(Opera)

NIST SBA

- T Research

SCAs for browser fingerprinting: evaluation

Complete test sequence set: S with |S| = 1956

Browsers @ Mozilla Firefox, version 64.0.0.6914;
Q@ Google Chrome, version 71.0.3578.98;
@ Microsoft Internet Explorer, version 11.0.17134.1;
Q@ Microsoft Edge, version 11.00.17134.471.
@ Opera, version 57.0.3098.106;

Q@ {Firefox},
Q@ {Google Chrome, Opera},
© {Microsoft Internet Explorer, Microsoft Edge}

NIST SBA

S anak e o Research

Recommendations on TLS cipher suites

Organization

'_"WW:‘

1 ET F

* Bundasami
i fir Sicherheit in der

Informationstachmnik

Cipher Suite Recommendations

The registry contained in early 2016 more than 300
named cipher suites. There are 28 cryptographic
algorithms for the authenticated key exchange, 25 for
the encryption part and five for the MAC

22 TLS cipher suites for hardened configurations of
server-side implementations

Suggest the use of TLS v1.2 with 16 cipher suites

Commissioned study suggests to use version 1.2 of the
protocol and a set of 24 recommended cipher suites

RFC 6460 defines a TLS v1.2 profile that is fully
compliant with Suite B comprised of two cipher suites

SBA

Research

Combinatorial coverage of TLS registry

T | e

094

o
®

,,

o
~

o
o

..

Coverage
o
o,

L e S Rt S ey
0 b b] [=e3way

...

o
EN

© o o
Py N w

e " ——

] |
)
|
)
I
|
|
|
I
|
|
)
|
|
)
)
|
|
|
)
|
§
)
|
|
|
)
)
)
)
|
)
|
|
)
|
|
|
)
I
)
. |

o
(=]

0.0 0.1 0.2 03 0.4 05 0.8 0.7 0.8 00 1.0
Combinations

e coverage of 37.62% for 2-way (363 out of 965 combinations)
 coverage of 9.06% for 3-way (317 out of 3,500 combinations)

NIST SBA

i i Research

KERIS: security models of API function calls

+ KERIS’ features cover the complete testing cycle: modelling, test
case generation, test case execution, log archiving and subsequent
post-processing of the results

+ Additional oracle: Integrating KernelAddressSANitizer (KASAN), a
dynamic memory error detector for the Linux kernel

+ Other improvements: Various bug fixes and improved usability

[A]_*‘ ERIS 4>‘ KASAN]
Covering Array generation test case execution test oracle
Q‘ test case

T— >[translation]

.
-
-

knowledge base KERIS

SBA

Research

Reproducing kernel security vulnerabilities

Security Vulnerability in Linux Networking Stack
+ First discovered by Google’s Project Zero team (also with the help of
KASAN for detecting memory errors)

* Input model: We created a fine-tuned combinatorial model of a
network configuration setup

» SUT: Together with assigning parameter values to the sendto
system call

[30.605462] BUG: unable to handle kernel paging request at

ffff880007a60b28
[30.605500] IP: [<ffffffff818bafb5>] prb_fill_ curr_block.isra.62+0
x15/0xc0

[30.605525] PGD 1e0c067 PUD 1e0d067 PMD f£fd4067 PTE 8010000007a60065
[30.605550] Oops: 0003 [#1] SMP KASAN

Excerpt of a Kernel crash produced with KERIS

SBA

Research

Malicious hardware logic detection

Cryptographic Trojans as Instances of Malicious Hardware

« Scenario: Trojans reside inside cryptographic circuits that perform
encryption and decryption in FPGA technologies

« Examples: Block ciphers (AES), Stream Ciphers (Mosquito)

« Problem: Hardware Trojan horse (HTH) detection

-

A R \v@@

v \ \\
L2 ° Y\, a¥ ©
- - -

)

Combinational Trojans

A Combinational Trojan in AES-128

« Activates when a specific combination of key bits appears

enc_dec
key(124) ——— \.‘I- o
key(118) | e
ey(116) P N —
key(102) ——— ™ f=——=s
key(98) — ‘-'_'_'_'.-::— J/) Wy T ——
L~ b— 4‘—\ ‘;l “— mod_enc_dec
key(57) — th— "x} =
key(38) —— J _
— Y
—
= __ A
kay|30) Y
|_
key(8) A

« When all monitored inputs are ”1”, the Trojan payload part (just one
XOR gate!) is activated

 Trojan reverses the mode of operation (DoS attack)

Triggering Hardware Trojan horses

Threat Model

+ The attacker can control the key or the plaintext input and can
observe the ciphertext output

+ The attacker combines only a few signals for the activation

Input Model for Symmetric Ciphers

+ Activating Sequence: Trojan monitors kK << 128 key bits of
AES-128

+ Attack vectors: Model activating sequences of the Trojan
(black-box testing); 128 binary parameters for AES-128

+ Input space: 2'%® = 3.4 x 10°® for 128 bits key
« Exhaustive testing becomes intractable

SBA

Research

Optimized test sets and test execution

n t Lesperance et al. (2015) CwWvV ours
128 | 2 27 129 11
128 | 3 s 256 37
128 | 4 213 8, 256 112
128 | 5 s 16, 256 252
128 | 6 s 349, 504 720
128 | 7 s 682, 752 2. 462
128 | 8 223 11,009, 376 | 17,544

Hardware implementation: AES symmetric encryption algorithm
over the Verilog-HDL model with the Sakura-G FPGA board

Oracle
Compare the output with a Trojan-free design of AES-128 (e.g. software
Implementation)

NIST SBA

S anak e o Research

Detecting Hardware Trojan horses

« Test suite strength (f) vs. Trojan length (k)

Suite Number of activations
t size k=2 k=4 k =8
2 11 5 % 0
3 37 12 4 0
4 112 32 7 1
5 252 62 14 1
6 720 307 73 6
7 2462 615 153 10
8 17544 4246 1294 178

Our Evaluation Results at a Glance

« There are about 366 trillion possible combinations for the Trojan

activation;

« The whole space is covered with less than 18 thousands vectors

« .. and these vectors activate the Trojan hundreds of times

NIST

MNaotional Institute of
Standards and Technology

Research

Summary

Software failures are triggered by a small number of
factors interacting — 1 to 6 in known cases

Therefore covering all t-way combinations, for small t, is
pseudo-exhaustive and provides strong assurance

Strong t-way interaction coverage can be provided using
covering arrays

Combinatorial testing is practical today using existing
tools for real-world critical software & security systems

 Combinatorial methods have been shown to provide
significant cost savings with improved test coverage,
and proportional cost savings increases with the size
and complexity of problem

Please contact us
if you’re interested!

Rick Kuhn & Raghu Kacker Dimitris Simos
{kuhn,raghu.kacker}@nist.gov dsimos@sba-research.org

http://csrc.nist.gov/acts
https://matris.sba-research.org/research/cst/

SBA NIST

Research e i o

Crash Testing

- Like “fuzz testing” - send packets or other input
to application, watch for crashes

- Unlike fuzz testing, input Is non-random;
cover all t-way combinations

- May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array

Limited utility, but can detect
high-risk problems such as:
- buffer overflows

- server crashes
NIST

Motional Institute of
Shandards and Technology

Embedded Assertions

Assertions check properties of expected result:

ensures balance ==\old(balance) - amount
&& \result == balance;

*Reasonable assurance that code works correctly across
the range of expected inputs

May identify problems with handling unanticipated inputs

Example: Smart card testing
« Used Java Modeling Language (JML) assertions
* Detected 80% to 90% of flaws

NIST

Motional Institute of
Shandards and Technology

New method using
two-layer covering arrays

Consider equivalence classes

Example: shipping cost based on distance d and weight w, with
packages < 1 pound are in one class, 1..10 pounds in another,
> 10 in a third class.

Then for cost function f(d,w),
f(d, 0.2) = (d, 0.9),
for equal values of d.
But
f(d, 0.2) #f(d, 5.0),

because two different weight classes are involved.

Using the basic property of equivalence classes

when a,and a, are in the same equivalence class,
fla,b,c,d,...) = fla,,b,c,d,...),

where = is equivalence with respect to some predicate.
If not, then

- either the code is wrong,
- or equivalence classes are not defined correctly.

Can we use this property for testing?

Let’s do an example: access control. access 1s allowed 1f
(1) subject is employee & time Is in working hours on a weekday; or
(2) subject is an employee with administrative privileges; or
(3) subject Is an auditor and it is a weekday.

Equivalence classes for time of day and day of the week

time = minutes past midnight (0..0539), (0540..1020), (1021..1439).

Days of the week = weekend and weekdays,
designated as (1,7) and (2..6) respectively.

Code we want to test

Int access _chk() {

if (emp && t >= START && t <= END &&
d >= MON && d <= FRI) return 1;

else
if (emp && p) return 2;
else

if (aud && d >= MON && d <= FRI)
return 3;

else

return 0;

Establish equivalence classes

emp: boolean

day: (1,7), (2,6)
Al A2
time:(0,100,539),(540,1020),(1021,1439)
Bl B2 B3
priv: boolean

aud: boolean

‘

day (enum) : A1,A2
time (enum): B1,B2,B:

All of these should be equal

0
100

539

» 1100,

539

B1
Al /10,
1
/10,17
1
710,171,

100
539

,0,0) f(O@

7 (0,

0, 0)

,0,0)

7 (0,

0
100

539

~N -

» 11001,
- 1539

=

100
539

,0,0)

0,0)

,0,0)

These should also be equal

0 0

Bl __——1|?1}100 100
A2 f(ON8]/I539],0,0) £ (0 539, 0, 0)

Now we’re -z 0 0
using class ~ /(®L{100},0,0) f(0, 2|-|100], 0,0)
A2 239 1539

100 6 100
539 539

Covering array

Primzflry emp: boolean
array. day: (1,7), (2,6)
R Al A2
0,A2B11,1 time: (0,539),(540,1020),(1021, 1439)
1,A1.B1.0,0 Bl B2 53
priv: boolean
0,A1,B2.1.0 aud: boolean
1,A2B2,0,1 l
Class A2 = (2,6)
0,A1B3,0,1 Class B1 = (0,539)
1,A2,B3,10 Sl
02011
06011
0253911

0653911

Run the tests

Faulty code:
Correct code if (emp && t>=START &&
output: t=—END
3333 && d>=MON && d<=FRl) return
0000 1;
1111 Faulty code output:
0000 3333
2222 0000
0000

2222

What’s happening here?

)\

/

Can this really work on practical code?

Experiment: TCAS code (same used in earlier model checking
tests)

« Small C module, 12 variables

« Seeded faults in 41 variants

 Results:

--
secondar #tests total detected

way X 3 -way 285x8 2280

4-way X 3-way 970x8 7760

* More than half of faults detected

« Large number of tests -> but fully automated, no human
Intervention

* \We envision this type of checking as part of the build process;
can be used in parallel with static analysis, type checking

Next Steps

Realistic trial use
Different constructions for secondary array, e.g., random values

Formal analysis of applicability — range of applicability/effectiveness,
limitations, special cases

Determine how many faults can be detected this way

Develop tools to incorporate into build process

Input Model Considerations

Nearly all testing requires selecting representative
values from input parameters

Examples: distance, angle, dollars, etc.
Most software has this issue
Affects number of tests produced in covering array

How can we improve input modeling process?

Classification tree

| PasswordDiagnoser|

Compaosition

xe

Sequence

yujhix
qwer Test designer evolves to:
| SpecialCharacter | abcd
a 9
1234
q

&

Mull

All these aspects correspond to the

PasswardDiagnoser -)
[_1ad] explicit requirements a password

[~ must satisfy
Length
Campasitian
<8
Predictability
>=§ UpperCase

&
Mo
| SpecialCharacter Qwerty
Yes Ma
ASCI
Yes No

Yes

Finished tree -> test parameters

These aspects correspond to the explicit

PasswardDiagnaoser . .
[g] requirements a password must satisfy

<8

Fredictability

== 8 UpperCase
Mumber Mo
Mo
SpecialCharacter =
Mo

5

Yes

Yes Mo

J’,,/’:;\\\\ Yes
=
Beginning
/N
\\ Beginning

InBetween QWEF‘W
End InBetween \ Beginning ASCI Begrm

End InBetween InBetween \ Ascending

Sequence

End End Descending

These aspects arise from the experience of the
tester or from the use of test catalogues

ComTest tool to speed up this process

800 Resource - newproj/src/newtree.xml - Eclipse Platform &
o (=) 'ﬁ‘[@ﬁ'%'l{:’ G - . o ox | 100% |v | If_CkQuick.-‘\ccess

:] =] ‘ L™ Resource

[Project Explorer 322 = O 9 newproj Model 2

=k -3 -
(=120
> TCE NEWproj
b test T T
—
i
R
=
/! |
. !
a¢ Create Constraint / \ [
5 Android WIrdcwEFTore 2 [=10 1250 23634
B Convert to CitLab Model
Bzouti 8 [|Task = O
@ - |
P Mobilertone Windowes Windowes W10
W Cormirainis

heCamera == noaand screenSize == 5= gyatermn == sysbem.android
“relamers == rue s et e Size == 5=

Feature Diagram | Feature Order | Source

Tasks ﬁCitLab view &7

o | SPLOT Importer (Boolean)
| Feature Ide Importer
o | SPLOT Importer (via Feature Ide)

= O

Learning and Applying Combinatorial Testing

Tutorials:

* “Practical Combinatorial Testing”, NIST publication

— case studies and examples, 82 pages;
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

* Youtube —search “pairwise testing” or “combinatorial testing”;
several good videos

* “Pairwise Testing in the Real World: Practical Extensions to

Test-Case Scenarios”, Jacek Czerwonka, Microsoft
https://msdn.microsoft.com/en-us/library/cc150619.aspx

Learning and Applying Combinatorial Testing

Web sites:

* csrc.nist.gov/acts — tutorials, technical papers, free and
open source tools

* pairwise.org - tutorials, links to free and open source tools

* Air Force Institute of Technology — statistical testing for
systems and software

http://www.afit.edu/STAT/page.cfm?page=713

: NIST
Model checking example i

-—- specification for a portion of tcas - altitude separation.
-- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002
MODULE main
VAR
Cur Vertical Sep : { 299, 300, 601 };
High Confidence : boolean;

init(alt_sep) := START ;

next (alt_sep) := case
enabled & (intent not known | !tcas_equipped) : case

need upward RA & need downward RA : UNRESOLVED;
need upward RA : UPWARD RA;

need downward RA : DOWNWARD RA;

1 : UNRESOLVED;

esac;
1l : UNRESOLVED;
esac;
SPEC AG ((enabled & (intent not known | !'tcas_equipped) &

'need downward RA & need upward RA) -> AX (alt sep = UPWARD RA))

-— “FOR ALL executions,
-- IF enabled & (intent not known .
—- THEN in the next state alt sep = UPWARD RA”

Computation Tree Logic NIST

Notienal Institute of
Shandords and Technology

The usual logic operators,plus temporal:

A ¢ - All: ¢ holds on all paths starting from the
current state.

E ¢ - Exists: ¢ holds on some paths starting from
the current state.

G ¢ - Globally: ¢ has to hold on the entire
subsequent path.

F ¢ - Finally: ¢ eventually has to hold

X ¢ - Next: ¢ has to hold at the next state

[others not listed]

execution paths
K///states on the execution paths

SPEC AG ((enabled & (intent not known |
'tcas _equipped) & !'need downward RA & need upward RA)
-> AX (alt sep = UPWARD RA))

“FOR ALL executions,
IF enabled & (intent not known
THEN in the next state alt _sep = UPWARD RA”

What is the most effective way to integrate
combinatorial testing with model checking?

Given AG (P -> AX(R))
“for all paths, in every state,
if P then in the next state, R holds”

For k-way variable combinations, vl & v2 & ... &
vk

vi abbreviates “var1 = val1”

Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1.AG(vl & v2 & ... & vk & P -> AX ! (R))
2.AG(vl & v2 & ... & vk -> AX 1 (1))
3.AG(vl & v2 & ... & vk -> AX ! (R))

NIST

HMational Institute of
Stendards and Technology

What happens with these assertions?

1. AG(vl & v2 & ... & vk & P -> AX ' (R))
P may have a negation of one of the v;, so we get
0O -> AX ! (R))
always true, so no counterexample, no test.
This Is too restrictive!

2. AG(vl & v2 & ... & vk -> AX 1 (1))
The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.
This Is too loose!

3.AG(vl & v2 & ... & vk -> AX ' (R))
Forces production of a counterexample for each R.
This is just right!

NIST

Motienal Institute of
Standords and Technelogy

Example: where covering arrays come in

attributes: employee , age, first_aid_training, EMT _cert, med_degree

rule: “If subject is an employee AND 18 or older AND: (has first aid
training OR an EMT certification OR a medical degree), then authorize”

policy:

emp && age > 18 && (fa || emt || med) — grant
else — deny

3-DNF so a 3-way coverin
(emp && age > 18 && fa) || Y 5

(emp & age > 18 && emt) || array .wiII.incIude | |
(emp && age > 18 && med) combinations that instantiate

all of these terms to true

Rule structure

attributes: employment_status and time_of day

rule: “If subject 1s an employee and the hour 1s between 9 am and 5 pm, then
allow entry.”

policy structure:
R, — grant
R, — grant

R, — grant
else — deny

Positive testing (easy) Negative testing (hard)

« testset DTEST = covering array of
strength k, for the set of attributes

want to ensure that any set of appropriate
attributes produces grant decision

included in R
test set GTEST: every test should produce a] o
response of grant. e constraints specified by ~R
for any input where some combination of k * ensures that all deny-producing
input values matches a grant condition, a conjunctions of attributes tested
decision of grant is returned. « masking is not a consideration —
Construct test set GTEST with one test for each because of problem structure

t f R as follows: o
crm of it as Tollows — deny is issued only after all grant

GTEST, = T; /\ ~T; conditions have been evaluated
J#i

— masking of one combination by
another can only occur for DTEST
when a test produces a response of
grant

— 1f s0, an error has been
discovered; repair and run test set
again

Generating test array for all 3-way negative cases

l((emp && age > 18 && fa) | All 3-way combinations of these

(emp && age > 18 && emt) || variables except for positive cases
(emp && age > 18 && med))

ConStraI nt emp age fa emt med
TRUE TRUE FALSE FALSE FALSE
TRUE FALSE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
_ - FALSE TRUE TRUE FALSE TRUE
Covering array generator output FALSE TRUE FALSE TRUE TRUE
FALSE FALSE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE TRUE
FALSE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE TRUE FALSE
TRUE FALSE FALSE FALSE TRUE

TRUE FALSE TRUE FALSE FALSE

Number of tests

for positive tests, Gtest: one test for
each term in the rule set, for for m
rules with p terms each , mp

for negative tests, Dtest: one covering
array per rule, where each attribute
In the rule Is a factor

easily practical for huge numbers of
tests when evaluation is fast - access
control systems have to be

K v___nl____ml| N tests] #GTEST| #DTEST|

3 2 50

100
4 50
100
6 50
100
2 50
100
4 50
100
6 50
100

20
50
20
50
20
50
20
50
20
50
20
50
20
50
20
50
20
50
20
50
20
50
20
50

36

45

306

378

1041

1298

98

125

1821

2337

ST

12085

80
200
80
200
80
200
80
200
80
200
80
200
80
200
80
200
80
200
80
200
80
200
80
200

720
1800
900
2250
6120
15300
7560
18900
20820
52050
25960
64900
1960
4900
2500
6250
36420
91050
46740
116850
187860
469650
241700
604250

Fault detection properties

tests from GTEST and DTEST will detect added, deleted, or altered faults with up
to k attributes

If more than k attributes are included in faulty term F, some faults are still
detected, for number of attributes | > k

J >k and correct term C is not a subset of F: detected by GTEST

J > kand C is a subset of F: not detected by DTEST; possibly detected by
GTEST; higher strength covering arrays for DTEST can detect

generalized to cases with more than grant/deny outputs; suitable for
small number of outputs which can be distinguished
(in principle can be applied with large number of outputs)

Summarizing:
Comparison with Model-based Testing

Use model checker to determine expected
result for specified conditions:

Use covering array generator to determine
expected result for all t-way conditions:

model-based: ruIeS\
010011 1— model —> 0100111 grant
checker
pseudo-
exhaustive: | rules
test covering

array — || array —
grant deny

Sample of XSS and SQLI vulnerabilities found

Methodology
1. Executing XSS attack vectors against SUTs

2. ldentifying one or more inducing combinations of input values that
can trigger a successful XSS exploit (example below)

JS0 WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE
"><script> o S = onError= U alert (1) o ?> U \>
"><script> ¥ > L onError= L alert(1) L b L \>
"><script> Ll 7 L onError= L src="invalid" L > L) \>
"><script> T > L) onError= L) src="invalid" Ly > T \>

Retrieving the Root Cause of Security Vulnerabilities

» Analysis revealed common structure for successful XSS Vectors

+ E.g. all contain the following 2-tuple: ("><script>, onError=)

UNIVERSITY OF - SBA
oW TEXAS
a ARLINGTON Resea rCh

Oracle-free testing

Some current approaches:

Fuzz testing — send random values until system fails, then
analyze memory dump, execution traces

Metamorphic testing — e.g. cos(x) = cos(x+360), so
compare outputs for both, with a difference indicating
an error.

Partial test oracle — e.g., insert element x in data
structure S, check x € S

ERIS: Combinatorial Kernel Testing

Modelling APIs Function Calls

+ Input testing via equivalence- and category partitioning

+ Input testing via novel flattening methodology

syscall (type, vgl r}pez .'J.r,g{1r ARG LIST arglj

W7

syscall (v, ve, 11,12, ...,

Abstr. Parameter Parameter values

ARG_CPU 1, 2, 3, 4, ..., 8

ARG MODE T 1, 2, 3, 4, ..., 4095, 4096

ARG_PID -3, -1, $pid_cron, $pid_w3m, 999999999

ARG ADDRESS null, $kernel_address, $page_zeros, $page Oxff, $page_allocs, ...
ARG FD fd;, fdy, fd3, ..., fdis

ARG_PATHNAME pathname,, pathname,, pathname,, ..., pathname,,

SBA

Research

Combinatorial methods for TLS testing

* Input Test Space for CT: 6 Q
Employ Input Parameter client R
Modelling (IPM) M1 |—ClientHello—»|

<+——ServerHello

« TLS Specification: Select ———
parameters and possible values «——ServerHelloDone
for M‘]! M5 and M7 M5 |——<ClientKeyExchange——

. ———ChangeCipherSpec———
 Three different models are

M7 Finished——»

constructed which give rise to -« ChangeCipherspec
three distinctive test sets «——Finished
- . — — Applicat] Data- — —
according to standard RESEEEEEe
UNIVERSITY OF - SBA
)< TEXAS Research

ARLINGTON

Input models for TLS messages

M5:

KeyExchangeAlgorithm : rsa,
dhe_dss, dhe_rsa, dh_dss,
dh_rsa, dh_anon
ClientProtocolVersion :
TLS10, TLS11, TLS12, DTLS10,
DTLS12
ClientRandom : 46-byteRand
PublicValueEncoding
implicit, explicit

Yc : empty, ClientDiffie -
HellmanPublicValue

M?7:

_ System Edit Operations _Help

i f_“ b H { |& 1 ﬁ Algorithm: | IPOG i

ACTS - ACTS Main Window

Slrength'{rz_]

master secret

as £ empty, half,
default, changebyte, multiply

finished label client
finished
Hash : empty, half, default,

changebyte, multiply

S| T 1 susocs
[Roat Node] KEYEXCHANCEALGORITHM CLIENTPROTOCOLVERSION CUENTRANDOM PUBLICVALUEENCODING YC
[SYSTEM-M5] 1 |rsa TLS10 46-byteRand ‘explicit ClientDiffie -HelimanPublic
» 7 KeyExchangealgorithm Z rsa TiS11 46-byteRand implicit empty
» BB ClientProtocoNersion 2 rsa TLS12 46-:ytenam; explicit empty - i -
A rsa DTLS10 46 -byteRan implicit ClientDIffie -HelimanPublic
» | R 4 : ~2 ; : < Ll = 4 :
S Clemiandom 5 rsa DILS12 46-byieRand exolicit empty
P 53 PublicvalueEncoding 6 dhe_dss TLS10 46-byteRand implicit empty
> B Yc 7 |dhe_dss TLS11 46-byteRand explicit ClientDiffie -HelimanPublic
Relations 8 dhe_dss TLS12 46-byteRand imp licit ClientDiffie-HelimanPublic
9 dhe dss DTLS10 46-byteRand explicit empty
10 dhe_dss DTLS1Z 46-byteRand implicit ClientDiffie -HellmanPublic
11 dhe_rsa TLS10 46-byteRand e xplicit empty
ece ACTS - ACTS Main Window

System Edit Operations Hélp

UNIVERSITY OF

Y8 TEXAS

ARLINGTON

[E E H [Ag] Algorithm: I_IPOG]Strength:F_]

= Test Result [N CURTS

System View I
¥ 15 [Root Node] MASTER_SECRET
v EEEEE | 2 enpy
» [master_secret Z empty
» [finished_label : empty
» [Hash - :m:g
Relations 6 half

FINISHED_LABEL

client finished
client finished
client finished
client finished
client finished
client finished

HASH
empty
half
default
changebyte
multiply
empty

SBA

Research

Test execution framework (TEF)

IPM

M1l M5 M7

. B

| CLIENT_HELLO
ALERT

compare Y > Discrepancy

results
SERVER_KEY EXCHANGE

SERVER_HELLO_DONE

TU SBA

Grazm Research

CLIENT_HELLO
SERVER_HELLO
CERTIFICATE

Case study for Hardware Trojan horses

Test Execution

« Hardware implementation: AES symmetric encryption algorithm
over the Verilog-HDL model with the Sakura-G FPGA board

Oracle
Compare the output with a Trojan-free design of AES-128 (e.g. software
implementation)

SBA

Research

USAF test plan coverage — shockingly good!

‘ 1 I Y _

0.9 - N Total B-way = 0.647
: l Cov == 0.00 = 21/24 = 1.000
Bl I I Cov >= 0.05 = 2121 = 1.000
0.8 = j— Cov >= 0.10 = 21/21 = 1.000
L T e Cov >= 0.15 = 21/21 = 1.000
0.7 .. Cov >= 0.20 = 21/21 = 1.000
| Cov >= 0.25 = 21/21 = 1.000
0.6 l Cov »= 030 = 2424 = 1 000
. : I Cov »>= 0.35=21/21 = 1.000
o Cov >= 0.40 = 21/21 = 1.000
g": 0.5 a Cov == 0.45 = 2121 = 1.000
3 Cov >= 0.50 = 21/21 = 1.000

0.4 Cov >= 0.55 = 15/21 = 0.714
' Cov == 0.60=15/21=0.714
Cov >= 0.65 = 15/21 = 0.714

0.3 Cov>==0.70=15/21=0.714
Cov >=0.75=13/21 = 0.619
0.2 Cov >= 0.80 = 10/21 = 0.476

Cov ==0.85=821=0.381
Cov =- 0.90 - 4/21 - 0.190
0.1 Cov >= 0.95 = 1/21 = 0.048
Cov >= 1.00 = 1/21 = 0.048

— Dway e Hygy
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.80 1.00 - Ty WEE Gpgy

0.05 015 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 mmw Jyay

Combinations

All 5-way combinations
covered to at least 50%

Testing configurations — combinations of
settings

* Example: application to run on any configuration of OS, browser,
protocol, CPU, and DBMS

* Very effective for interoperability testing

Browser Protocol
IE MySQL
Firefox sybase
IE Oracle
Firefox MySQL
IE Sybase
Firefox Oracle
IE MySQL

Firefox Sybase

1
2
3
4
o
G
7
&8
9

Firefox Oracle

Firefox Oracle NISI'

dotional Institute of
rds ond Technelogy

=
]

NIST
Tradeoffs e

« Advantages

- Tests rare conditions

- Produces high code coverage

- Finds faults faster

- May be lower overall testing cost

« Disadvantages

- Expensive at higher strength interactions (>4-way)

- May require high skill level in some cases (if formal
models are being used)

