
www.ffg.at/comet

SBA Research (SBA-K1) is a COMET Centre within the framework of COMET – Competence Centers for Excellent Technologies Programme
and funded by BMK, BMDW, and the federal state of Vienna. The COMET Programme is managed by FFG.

Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, Edgar Weippl

From Hack to Elaborate Technique
A Survey on Binary Rewriting

Survey Motivation

Binary Rewriting?

▶ Software is often distributed in binary form or needs to be changed
during runtime.

▶ Originally inspired by the need to change parts of a program while
software is executed.

▶ Nowadays, evolved into a plethora of approaches with different
application domains (e.g. Emulation, Observation, Optimization,
Hardening).

Problem

▶ A plethora of different approaches and methods has led to the
development of many different tools.

▶ However, because of this, it is not always easy to identify the right
tool for the problem at hand.

▶ Additionally, the availability of tools and methods for specific
purposes is not well studied.

Rewriting at a Glance

orig.
elf, pe,
coff,
etc.

binary stream
(instructions
& data)

Parsing Analysis Code Generation

altered
elf, pe,
coff,
etc.

(1) (2a&2b)

rewritten
primitives

(4)

Transformation

(3)

primitives
(instructions,
f(), var., etc.)

(a) Static

orig.
elf, pe,
coff,
etc.

load

analyse 
next 
instruction

transform 
next
instruction

altered
elf, pe,
coff,
etc.

save

(1)

dynamic instrumenter

primitives
(instructions,
f(), var., etc.)

(2a&2b)

(3)

transformed
primitives

binary

generate
code

(4)

(4a)

(b) Dynamic

Figure 1: Required steps to apply binary rewriting in principle.

4 Steps of Rewriting

1. Parsing: Extract instruction and data stream from binary objects for
further analysis

2. Analysis: Provides information on buidling blocks (e.g., disassembly,
structural recovery or label, symbol and data type extraction)

3. Transformation: Prepare instrumentation points and define
alterations (e.g., to instructions or control flow)

4. Code Generation: Apply the intended changes into the binary of
interest in a way to keep it executable

Transformations

Static perform alterations directly at instrumentation point (e.g. during
link time)

Dynamic Able to perform changes at instruction granularity during
runtime

Minimal-invasive operations on branch granularity, by redirecting
control flow to newly generated code

Full-translation transform binaries at any instruction, but require lifting
into Intermediate Representation (IR)

lin. & rec.

lin.

pattern

rec.

lin. & rec. & dyn.

rec. & dyn.

dyn.

elaborate

symtab.

run-time & pattern

run-time

linked-bbs

m-i

llvm

own

vex & llvm

rtl

vex

code-cache

ada

Disassembly Primitive detection Rewriting52
Publications

emulation

hardening

generic

observation

optimization

Initial Application
domain

12,19,
21,22,
23,24,
27,28,
29,30,
31,33,
35,36,
37,38,
40,42,
49, 50,
51,53

3, 7

1,4.
5,14,
17,34

2,6,
9,10,

11,13,
15,18,
20,26,
32,39,
41,43,
44,45,
46,47,
52,54

8,16

25,48

5,7,
12,19,
23,31,
36,34,
37,38,

40

3,14,
17,21,
22,24,
25,27,
28,29,
30,33,
35,41,
42,48,
49, 50,
51,53

1,4

8,16

2.6
9,10,

11,13,
15,18,
20,26,
33,39,
43,44,
45,46,
47,52,

54

2,6,
9,12,

23,25,
28,29,
30,31,
34,36,
37,38,
40, 50

3,19,
41

7,24,
27,33,
35,48,

53

10,11,
13,15,
18,25,
32,39,
43,46,

52

5,8,
14,16,
17,22,

51

44,45,
47,54

1,4

20,21

42,49

10,12,
16,18,
19,21,
24,26,
28,29,
30,31,
32,36,
37,38,
39,40,
41,43,
45,47,
48,50,
51,54

3,4,
9,13,

15,22,
33,34,
35,42.
44,53

20,23,
25,27,
49,52

7,11,
46

1,2,
5,6,

8,14,
17

Figure 2: Sankey diagram further categorizing the publications listed in [1]. The
adjacent row depicts the tool’s application domain, followed by its used disassembly,
structural recovery, and transformation strategy.

Conclusion

▶ Full-translation-based schemes allow for application of reasoning approaches due to the more abstract representation of the binary under investigation.
▷ Currently only semantic equivalent lifters are available, which are sufficient for many applications.
▷ Scenarios like altering timing sensitive applications, performance optimization for throughput-oriented programs, or rewriting software with real-time

requirements would greatly benefit from instruction equivalent lifters.
▶ The x86 architecture is still the primary target for binary rewriting applications, but other architectures like ARM and MIPS draw more and more interest.

[1] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl. From hack to elaborate technique—a survey on binary rewriting. ACM Computing Surveys (CSUR), 52(3):1–37, 2019.


	References

