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From Hack to Elaborate Technique
A Survey on Binary Rewriting

Survey Motivation

Binary Rewriting?

▶ Software is often distributed in binary form or needs to be changed
during runtime.

▶ Originally inspired by the need to change parts of a program while
software is executed.

▶ Nowadays, evolved into a plethora of approaches with different
application domains (e.g. Emulation, Observation, Optimization,
Hardening).

Problem

▶ A plethora of different approaches and methods has led to the
development of many different tools.

▶ However, because of this, it is not always easy to identify the right
tool for the problem at hand.

▶ Additionally, the availability of tools and methods for specific
purposes is not well studied.

Rewriting at a Glance
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Figure 1: Required steps to apply binary rewriting in principle.

4 Steps of Rewriting

1. Parsing: Extract instruction and data stream from binary objects for
further analysis

2. Analysis: Provides information on buidling blocks (e.g., disassembly,
structural recovery or label, symbol and data type extraction)

3. Transformation: Prepare instrumentation points and define
alterations (e.g., to instructions or control flow)

4. Code Generation: Apply the intended changes into the binary of
interest in a way to keep it executable

Transformations

Static perform alterations directly at instrumentation point (e.g. during
link time)

Dynamic Able to perform changes at instruction granularity during
runtime

Minimal-invasive operations on branch granularity, by redirecting
control flow to newly generated code

Full-translation transform binaries at any instruction, but require lifting
into Intermediate Representation (IR)
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Figure 2: Sankey diagram further categorizing the publications listed in [1]. The
adjacent row depicts the tool’s application domain, followed by its used disassembly,
structural recovery, and transformation strategy.

Conclusion

▶ Full-translation-based schemes allow for application of reasoning approaches due to the more abstract representation of the binary under investigation.
▷ Currently only semantic equivalent lifters are available, which are sufficient for many applications.
▷ Scenarios like altering timing sensitive applications, performance optimization for throughput-oriented programs, or rewriting software with real-time

requirements would greatly benefit from instruction equivalent lifters.
▶ The x86 architecture is still the primary target for binary rewriting applications, but other architectures like ARM and MIPS draw more and more interest.
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