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Problem & Motivation

Federated learning allows performing machine learning over distributed data while preserving privacy of data owners. Each data holder independently and
locally trains a machine learning model on her own data and then shares the model with other participants of the federated learning process, so other parties
can proceed training on their own data, or aggregate several models to a global one. Federated learning addresses the issue of data /ocality and sensitivity
and also enables using computational power of distributed systems, closer to the place where the data is originating. However, models, which are exchanged
during the federated learning process, can leak information about their training data. In this work, we

» evaluate privacy risks in federated learning by performing membership inference attack,

» propose mitigation strategies to improve privacy properties of federated learning,

» develop guidelines for federated learning allowing to maintain effectiveness of the models while preserving privacy of the data.
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A randomly initialized model is locally trained at the first client and then passed to the
next node in the sequence. After completing a full round of 7 nodes, the model is passed
again to the first node for repeating the training process.
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In sequential federated learning, the attack on node N1 data has higher
Local data attack on node N1 data has the highest accuracy while performing
accuracy while performing membership inference on the model
membership inference on the shared trained locally at N1, than attacking
Parallel federated learning model right after training at node N1. global model, or local models from
An aggregator initializes a global model with random weights and shares it to every other nodes.

node in the setting. Each node trains the model in parallel on its local data and then
returns it to the secure aggregator. From the locally trained models, a new global model
is aggregated and shared to the clients for the following training cycle.

Mitigation evaluation
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» Federated learning allows to avoid data transferring while training
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information about their training data, e.g. when attacker performs

membership inference attack 4 . -0 |
Th bershio inf " b g d bv addi lows to mitigate the risks of membership inference attack. However, the noise should be
> e membership inference attack accuracy can be reduced by aading properly chosen to not cause loss in effectiveness of the global model on the classification

noise to the training data. task.

In both sequential and parallel federated learning adding, noise to the training data al-
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