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Problem & Motivation

Fingerprinting techniques, which can be seen as a personalized @
version of generic watermarks applied to a digital object, can be utilized as a Fingerprint Fingerprint
mechanism enabling ownership attribution. They generally embed a pattern in the data, l S?tk]‘
i.e., they distort the original data set to a certain extent. A good fingerprint should (i) be ’ - C ) Afeceddata
] T . —> Embedding ‘ ‘ Extraction }4——
recognizable by the original owner of the data, (ii) not be detectable (and consequently, | S
removable) by recipients of the data, (iii) be robust to intentional or unintentional Jronelce ? | |
modifications of the data, and (iv) not lower the utility of the data too much. e : I E?f
The type of data in the dataset can be the crucial point for evaluating fingerprinting scheme effectiveness. R : § ﬁ NEES .
Categorical data are shown to give rise to more problems with embedding the fingerprint compared to Fingarprinted data CTTTY P
numerical data, yet the appropriate fingerprinting scheme for categorical data is necessary; otherwise, the
domain of fingerprinting applications is very limited. Figure 1. Fingerprinting workflow
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» AK Scheme[2): pseudo-random marking pattern A novel scheme for fingerprinting
» Block Schemes;: binary image used as fingerprint information [ J categorical data in relational datasets is
» Two-level Schemejs): separate patterns for owner and the recipient l proposed in [1]. The scheme focuses on
p X > preserving the semantic relations
between attributes, and thus limiting the
L | perceptibility of marks, and the effects of
l the fingerprinting on the data quality and
Utility Evaluation ” ) utility
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s 10 — via its effect on machine l
8 os learning model performance foo-
Y ) i AN S N E— 5. The representative results
L o5l with Random Forest show
T R o rather small performance . Tk e e omma  mw o
2_1_5 f decreases, up to 1.5%. The Figure 4: F?ngerprinting scheme :
3 L ! performance drop is bigger based on neighbourhood search Figure 5. Distribution of a categorical attribute
for datasets with more before and after fingerprinting
Figure 2: Classification performance of introduced marks as well as
fingerprinted datasets for small datasets.
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Data Utility Under Malicious Attacks
The attacks are additionally decreasing dataset’s utility. The analysis os
shows the decrease in utility of 5 different classifiers under attacks. The EP 10000
results show that modifying data such that the fingerprint is not likely to &
be extracted anymore, the data loses on its utility significantly ). 02
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3070 = - A 07 Rk ceptible to malicious attacks (actions on the dataset with the goal of re-
==y R moving the fingerprint). The main step for gaining robustness is choosing
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Figure 3 Data utility decrease by strengthening the attacks 0o e !
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