
When legacy code turns into senescent code: Assessing software aging and its implications

Philip König (SBA Research, PKoenig@sba-research.org), Kevin Mallinger (SBA Research,

KMallinger@sba-research.org), Alexander Schatten (SBA Research, ASchatten@sba-research.org)

Research Paper, Cluster [3]: Digitalization and methods for technology assessment: new approaches

In the last decades it became clear that, more often than not, software engineers were focused on

delivering new features and in the process generated highly complex interacting layers and modules

of software over long periods of times, where very old legacy code interacts in complex ways with new

code. Various studies imply that software aging is a real phenomenon whereupon continuous

execution of programs leads to a gradual build-up of errors and overall degradation of performance.

Strange and unclear behaviour emerges from interactions of new and old modules, which in the worst

case manifest itself in crashes, errors and other unwanted responses. This has especially drastic

consequences for critical infrastructure networks like power grids or medical software, where

conventional practices for error detection like controlled shutdowns and reboots are seldomly an

option. Invaluable for early detection of such issues are non-invasive methods which would serve as

detectors to assess when, for example, a software module begins to show first symptoms of

developing aforementioned and similar problems. While first technology assessment methodologies

concerning software aging have been developed none drew inspiration from the natural sciences,

where, especially in the last few decades, biogerontology – the science of processes of aging and its

consequences – has begun to pick up serious steam. By abstracting similar processes in biology and

computer science the fundamental problems and their solutions can be analyzed and then transferred

from one to another. Recent discoveries showed that chronological age is not always an accurate

variable to define a cell's or an organism's biological age, as different organisms and even different

cell types within those organisms age at different rates. Cancer cells even evolved mechanisms to

periodically rejuvenate themselves and thus became quasi-immortal. Similarly, it is important to not

use chronological age as the only parameter to determine if and when code ages, as very old code

that continuously gets maintained and cautiously ported to new platforms might exhibit less signs of

software aging than chronologically younger modules which were dragged along by techniques like

wrapping. Therefore different biological strategies and parameters for true age assessment will be

analyzed, such as the Hayflick limit, which describes how dividing cells count how often they already

multiplied by periodically shortening dedicated parts of their chromosomes. After a certain amount

of divisions a critical length is reached and a suicide program is initiated to reduce the risk of becoming

a cancer cell. There has also been recent work on cell rejuvenation by autophagy, a process where

under certain conditions cells start a maintenance program which detects and removes unnecessary

or dysfunctional components. Such modes of operation will be compared to those of proposed

software rejuvenation techniques and potentially supplement and augment those methodologies.

Thus ultimately this paper aims to achieve a transfer of knowledge from biology to computer science

to capture systemic processes of software aging that foster the improvement of the long-term

functionality of cyber-physical systems and their resilient design.

mailto:PKoenig@sba-research.org
mailto:KMallinger@sba-research.org
mailto:ASchatten@sba-research.org

