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Abstract

Precisely identifying arbitrary subsets of data so that these can be reproduced is a daunting challenge in data-
driven science, the more so if the underlying data source is dynamically evolving. Yet, an increasing number
of settings exhibit exactly those characteristics: larger amounts of data being continuously ingested from a
range of sources (be it sensor values, [online] questionnaires, documents, etc.), with error correction and quality
improvement processes adding to the dynamics. Yet, for studies to be reproducible, for decision-making to be
transparent, and for meta studies to be performed conveniently, having a precise identification mechanism to
reference, retrieve, and work with such data is essential. The Research Data Alliance (RDA) Working Group
on Dynamic Data Citation has published 14 recommendations that are centered around time-stamping and
versioning evolving data sources and identifying subsets dynamically via persistent identifiers that are assigned
to the queries selecting the respective subsets. These principles are generic and work for virtually any kind of
data. In the past few years numerous repositories around the globe have implemented these recommendations
and deployed solutions. We provide an overview of the recommendations, reference implementations, and pilot
systems deployed and then analyze lessons learned from these implementations. This article provides a basis
for institutions and data stewards considering adding this functionality to their data systems.

1 Introduction

Accountability and transparency in automated decisions (ACM US Public Policy Council, 2017) have important
implications on the way we perform studies, analyze data, and prepare the basis for data-driven decision making.
Specifically, reproducibility in various forms, that is, the ability to recompute analyses and arrive at the same
conclusions or insights is gaining importance. This has impact on the way analyses are being performed,
requiring processes to be documented and code to be shared. More critically, data–being the basis of such
analyses and thus likely the most relevant ingredienable in any data-driven, decision-making process–needs to
be findable and accessible if any result is to be verified. Yet, identifying precisely which data were used in a
specific analysis is a nontrivial challenge in most settings: Rather than relying on static, archived data collected
and frozen in time for analysis, today’s decision-making processes rely increasingly on continuous data streams
that should be available and usable on a continuous basis. Working on last year’s (or last week’s) data is not
an acceptable alternative in many settings. Data undergo complex preprocessing routines, are recalibrated, and
data quality is continually improved by correcting error. Thus, data are often in a constant state of flux.

Additionally, data are getting ‘big’: Enormous volumes of data are being collected, of which specific subsets
are selected for analysis, be they a small number of individual values to massive subsets of even bigger data sets.
Describing which subset was actually being used–and trying to re-create the exact same subset later based on
that description–may constitute a daunting challenge due to the complexity of subset selection processes (such
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as marking an area on an image) and the ambiguities of natural language (e.g., do the measurements in the
time period from January 7 to June 12 include or exclude the respective start and end dates?).

At the same time, expectations of data provisioning are increasing:

• Data should be timely, that is, available for analysis immediately after they have been collected and
quality-controlled, not at weekly, quarterly, or annual intervals.

• Data management and storage should be efficient, avoiding storing overlapping duplicates of increasingly
large data subsets.

• Data identification and citation processes should be transparent to users.

• Solutions should be generic, working across different types of data, to be acceptable in an increasingly
interdisciplinary work environment, and the need to combine and work with varying types of data in each
domain.

The Research Data Alliance (RDA) Working Group on Dynamic Data Citation set off to tackle these
challenges in March 2014. In September 2015 it released its recommendations in the form of a compact 2-
page flyer (Rauber, Asmi, van Uytvanck, & Pröll, 2015) together with a more extensive report (Rauber, Asmi,
van Uytvanck, & Pröll, 2016) providing some background information on the rationale for certain decisions.
The recommendations specifically address principle 7 on Specificity and Verifiability of the Joint Declaration of
Data Citation Principles (Data Citation Synthesis Group, 2014) and aim specifically at providing an automated,
machine-provided, and machine-actionable solution in addition to being human-readable.

The recommendations center around the principle of ensuring evolving data is timestamped and versioned,
with subsets being identified via time-stamped queries that are stored. By assigning a persistent identifier
(PID, e.g., a Digital Object Identifier, DOI) to these queries they become resolvable and can be reexecuted
transparently against the time-stamped database to re-create the exact same subset that was initially selected.
This eliminates the need for predefined subsets that are frozen at predefined intervals, avoids data duplication,
and is transparent to the researcher, while at the same time being applicable to virtually all types of data, such
as databases, spreadsheets, collections of files, or an individual image. Similarly, queries can come in any form,
ranging from SQL database queries to marking an area on an image.

After a one-year intensive evaluation, both conceptually, as well as via reference implementations and actual
operational deployments, these recommendations were officially endorsed by the RDA in September 2016 and
are currently listed to become a European Technical Specification. They are further being referred to in an
increasing number of standards and reference guidelines such as ISO 690:2010, Information and documentation
— Guidelines for bibliographic references and citations to information resources (International Organization for
Standardization (ISO), 2010) and the Earth Science Information Partners (ESIP) Data Citation Guidelines for
Earth Science Data Version 2 (ESIP Data Preservation and Stewardship Committee, 2019).

Given the experiences gained from several further implementations and deployments, as well as the discus-
sions taking place at a variety of workshops and meetings of the Working Group, it seems timely to review the
various approaches that different institutions have taken to implement a data identification and citation service,
compiling the lessons learned in order to provide guidance and good-practice examples to other repositories
wishing to offer such services to their customers.

The remainder of this article is structured as follows. Section 2 provides a brief review of the recommenda-
tions, followed by descriptions of several proof-of-concept reference implementations in Section 3 that show the
feasibility of the approach in a range of different data settings. Section 4 describes several operational imple-
mentations of the recommendations from a range of disciplines (e.g., Medicine, Earth Sciences, Astrophysics),
and a range of different data types (relational databases, NetCDF files, repositories of image data) that vary
in size and data dynamics. Section 5 discusses the lessons learned and identifies open issues given the current
state of the recommendations and their deployment. Finally, Section 6 summarizes the current state of affairs
and provides an outlook onto future development.

2 RDA Recommendations on Dynamic Data Citation

In order to identify reproducible subsets for data citation, sharing and reuse of data 14 recommendations were
formulated by the Working Group on Data Citation (WGDC) of the Research Data Alliance (RDA) (see Figure
1).

They are grouped in four areas (Rauber et al., 2015, 2016):
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Figure 1: RDA WGDC Recommendations for Data Citation (Rauber et al., 2016).

• Preparing the Data and the Query Store

– R1 - Data Versioning: Apply versioning to ensure earlier states of data sets can be retrieved.

– R2 - Timestamping: Ensure that operations on data are timestamped, i.e., any additions, deletions
are marked with a timestamp.

– R3 - Query Store Facilities: Provide means for storing queries and the associated metadata in
order to reexecute them in the future.

• Persistently Identifying Specific Data Sets

– R4 - Query Uniqueness: Rewrite the query to a normalized form so that identical queries can be
detected. Compute a checksum of the normalized query to efficiently detect identical queries.

– R5 - Stable Sorting: Ensure that the sorting of the records in the data set is unambiguous and
reproducible.

– R6 - Result Set Verification: Compute fixity information (checksum) of the query result set to
enable verification of the correctness of a result upon re-execution.

– R7 - Query Timestamping: Assign a timestamp to the query based on the last update to the entire
database (or the last update to the selection of data affected by the query or the query execution
time). This allows retrieving the data as it existed at the time a user issued a query.

– R8 - Query PID: Assign a new PID to the query if either the query is new or if the result set
returned from an earlier identical query is different due to the changes in the data. Otherwise, return
the existing PID.

– R9 - Store Query: Store query and metadata (e.g., PID, original and normalized query, query and
result set checksum, timestamp, super-set PID, data set description, and other) in the query store.

– R10 - Automated Citation Texts: Generate citation texts in the format prevalent in the desig-
nated community for lowering the barrier for citing the data. Include the PID into the citation text
snippet. For details see (Silvello, 2017).

• Resolving PIDs and Retrieving the Data

– R11 - Landing Page: Make the PIDs resolve to a human readable landing page that provides the
data (via query reexecution) and metadata, including a link to the super-set (PID of the data source)
and citation text snippet.

– R12 - Machine Actionability: Provide an API / machine actionable landing page to access
metadata and data via query reexecution.
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• Upon modifications to the Data Infrastructure

– R13 - Technology Migration: When data is migrated to a new representation (e.g., new database
system, a new schema or a completely different technology), migrate also the queries and associated
fixity information.

– R14 - Migration Verification: Verify successful data and query migration, ensuring that queries
can be reexecuted correctly.

The recommendations are applicable for all types of data representation, be it individual images or comma-
separated value (CSV) files, collections of files such as PDF documents, source code or NetCDF files, structured
data in relational databases, semistructured data in XML files, linked data in triple stores, and more. The
recommendations also apply for all kinds of data characteristics, be they massive repositories of satellite imagery
or small collections of aggregated statistical information, highly dynamic data and continuous sensor data
streams or entirely static data that never changes. The recommendations also work for all kinds of subsetting
paradigms, be they classical SQL queries against a relational data base, SPARQL queries against an RDF
endpoint, selecting one or more files from a repository or directory structure or identifying a subgraph in a
network structure, marking an area on an image by drawing boundary lines, slicing and dicing multidimensional
data files, or running specific scripts that select subsets of some form of data structure.

This approach allows a system to precisely identify any arbitrary subset of data without requiring any
additional effort from the user because the actual subsetting and resolution process is completely transparent.
The user need not know anything about the actual subsetting process to retrieve the subset. (In discussions
the approach has been described as analogous to the transparency provided by file systems: when opening a file
for reading / writing on common file systems, the identifier (toward the user front-end usually a combination
of path and filename) is resolved and a query is passed to the hard disc to retrieve and assemble the file that is
actually stored in a series of blocks distributed across a disc or, in the case of RAID system, even distributed
across several discs. A file usually is not materialized as a contiguous sequence of bytes at a specific address,
but assembled dynamically after retrieving a set of distributed blocks due to a query being processed by the file
system.)

Reexecuting the query with the original timestamp against the time-stamped data source allows a user to
retrieve exactly the data as it was initially selected. Additional safeguards such as checksums support verification
of data, while automatically derived citation texts ease referencing data in publications.

However, the approach even extends beyond retrieving the data in its original state. Reexecuting the query
against the current status of a data source (basically like using the current timestamp as part of the query), also
allows the retrieval of the current status of the semantically identical data. It returns the semantically same
subset of data including all additions and corrections made since that are covered by the query. Having the
queries stored allows them to be reexecuted against the status of the data source at any given point in time,
allowing to track the effects of data evolution.

Prior to releasing these recommendations, they were tested both conceptually and in practice via several
proof-of-concept implementations apparently confirming their viability and versatility. It is only through actual
deployment in fully operational settings, however, that the validity and practicality of the recommendations can
truly be tested. In the following sections we will thus take a look at the most pertinent pilot implementations,
analyze the concrete approaches that have been taken to implement the various elements, and analyze the
lessons learned to provide guidance to other institutions wanting to deploy the same services.

Both the proof-of-concept and operational implementations present a broadly representative but not exhaus-
tive set of different data types and disciplines. Note that the applicability of these principles is independent
of the actual need for implementing the solution. For example, if data sets are entirely static, then obviously
no versioning needs to be implemented. If, at any time later, a change to the data set does occur, then such a
change should be versioned and time-stamped if reproducibility of results obtained from the preceding version
of the data is required. Several of the pilot adopters chose to only implement a subset of the recommendations.
While the basic principles always apply, adopters of these recommendations will always need to consider the
trade-offs between the cost and value of implementing the solution, the efficiency of the implementation, and
the functionality currently supported by the data repository. The following examples and discussion can inform
those sorts of considerations. Table 1 provides an overview of current and ongoing implementations and indi-
cates at which RDA Plenary they were being discussed. The corresponding slide decks are publicly available in
the WGDC repository1.

1https://www.rd-alliance.org/node/141/file-repository

4



Table 1: Overview of adoption of the recommendations
Standards and Reference Guidelines RDA Plenary

#
Joint Declaration of Data Citation Principles: Prin-
ciple 7: Specificity and Verifiability
ESIP:Data Citation Guidelines for Earth Science
Data Vers. 2

P14

ISO 690, Information and documentation - Guide-
lines for bibliographic references and citations to in-
formation resources

P13

EC ICT TS5 Technical Specification (pending) P12
Reference Implementations
MySQL/PostgreSQL P5, P6
CSV files: MySQL, Git P5, P6, P8
XML P5
CKAN Data Repository P13
Adoptions deployed
CBMI: Center for Biomedical Informatics, WUSTL P8
FEMC: Forest Ecosystem Monitoring Cooperative P8
CCCA: Climate Change Center Austria P10, P11, P12
EODC: Earth Observation Data Center P14
VAMDC: Virtual Atomic and Molecular Data Center P8, P10, P12
NICT: Smart Data Platform P10, P14
Deep Carbon Observatory P12
Ocean Networks Canada P12
In Progress
Dendro System P13

3 Proof-of-Concept Implementations

We developed four proof-of-concept reference implementations for different data storage scenarios. These cover
(1) relational databases in a solution relying on MySQL (Pröll & Rauber, 2013; Pröll, Meixner, & Rauber,
2016), (2) a Git-based approach to deal with file-based data, for example, CSV files (Pröll et al., 2016), (3)
two different approaches to XML databases (Huber, 2015), and (4) an approach integrating a NoSQL database
into the CKAN repository system. We review these briefly to provide some context for the operational pilot
deployments described thereafter, including pointers to source code.

3.1 Relational Databases

Relational database management systems (RDBMS) are a well-established and well-understood technology
based on the strong theoretical foundation of set theory. The four fundamental operations known as CRUD allow
basic data manipulation by offering functions for creating (INSERT), reading (SELECT), updating (UPDATE),
and deleting (DELETE) records. These operations are essential for interacting with the structured data that
is exposed as tables by database management systems.

RDBMS use transactions for ensuring the Atomicity, Consistency, Isolation, Durability (ACID) principle.
While this powerful feature ensures that changes are visible to other transactions in a consistent way, it does
not provide any temporal information that would allow reconstructing the state of a data set without additional
metadata.

The SQL 2011 standard (International Organization for Standardization & International Electrotechnical
Commission, 2011) introduces features for temporal data support, automatically creating history tables and
adding time periods of record validity, thus taking care of versioning and time-stamping ’out-of-the-box.’ As
support for these temporal tables is still limited, we describe how a data citation mechanism can be implemented
regardless of the SQL standard compliance and independent from vendor implementations (Pröll & Rauber,
2013).

To establish data citation as an accepted practice, the implementation of a data citation model should be
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as convenient and noninvasive as possible, but often database queries are deeply coupled with the application
code base or external tools. Thus, changing queries and interfaces is cumbersome and often not feasible. Here
we describe the benefits and limitations of three approaches toward addressing these challenges and handling
the metadata required for data citation: (1) integrated, (2) history table, and (3) hybrid.

Integrating the temporal data: To store the records in a versioned fashion, the existing tables need to
be extended by temporal metadata columns, that is, two columns for timestamp-added and timestamp-deleted
are added to each table. In order to maintain the uniqueness of the records, the primary key column needs to be
extended by the timestamp-added column. This method is intrusive, because tables and application interfaces
need to be adapted to insert and process the new timestamp columns. Also, the queries need to be adapted in
a way that per default only the latest version of the records is obtained. This modification can have effects on
the performance, as queries require filtering outdated data. Nevertheless, this method can be used in scenarios
where deletions and updates occur rarely or where processing times of regular queries can easily be handled over
the entire versioned data set. This approach requires a major redesign of the database, as well as the interfaces
of programs accessing it. As an advantage, the retrieval of the earlier data state then requires a simple query
that selects the latest version per record and omits deleted records. From a storage perspective, this approach
only produces low overhead as records only append timing and versioning data.

Dedicated history table: The second approach implements a full history using a dedicated history table.
Records that are inserted into the source table are immediately copied into the history table, which is extended
by timestamp-added and timestamp-deleted columns. Deleted records are removed from the original table and
only marked as deleted in the history table. An advantage of this approach is that the original tables remain
unchanged, incurring no changes to their interfaces. There is also no impact on the database performance as
the source table only store the live data. All requests for data citation are handled by the history table.

Hybrid: For the hybrid approach, a history table has to be added for all tables. The history table, extended
again by timestamp-added and timestamp-deleted columns, is used for storing all records that are updated or
deleted from the source table, thus keeping only the latest version in the source tables. The original table always
reflects the latest version, whereas the history table records the evolution of the data.

The advantage of this approach is a minimal storage overhead, especially for append-only scenarios. A
disadvantage is a more complex query structure for retrieving historical data because the system needs to check
whether updates exist and then retrieve the records either from the original source or history tables. Yet, in
settings where the reexecution of historic queries is a low-frequency event, this might be the preferred solution.
This is thus also the solution specified in the SQL2011 standard and rolled out as temporal tables by several
widely used database engines, including DB2, PostgreSQL, Teradata, Microsoft SQL Server, Oracle, and others.

A crucial aspect of result sets is their sorting. The results returned by a database query are commonly
fed into subsequent processes in their order of appearance in the result set. In situations where the order of
processing has some effect on the outcome (e.g., in machine learning processes), we need to ensure that consistent
sorting of the result sets is provided. Hence, the order in which records are returned from the database needs to
be maintained upon a query’s reexecution. This is challenging as relational databases are inherently set based.
According to the SQL standard, if no ORDER BY clause is specified, the sorting is implementation specific.
Even if an ORDER BY clause is provided, the exact ordering may not be defined if there are several rows
having the same values for the specified sorting criteria. For this reason, queries need to be rewritten to include
a sort on the primary key prior to applying any user-defined sort. The reference implementation was developed
for the MySQL database engine2 but will work for any relational database management system supporting the
SQL standard. The Posgres database engine natively features support for temporal tables.

3.2 File-based Data via Git

Many data sets are represented in a variety of file formats, including structured data stored, for example, in
comma-separated value (CSV) files, various spreadsheet program formats, XML files, software source code, and
questionnaires and papers represented in plain text or word processing formats. Specifically, in settings for
long-tail data, the diversity of formats, sometimes combined with a low update frequency, makes it difficult to
devise a data-type-specific solution as presented for relational databases above. In such settings, a variety of
versioning systems such as Git3 and Subversion (SVN)4, versioning file systems (e.g., NILFS5), or the versioning

2www.datacitation.eu
3https://git-scm.com/
4https://subversion.apache.org/
5https://nilfs.sourceforge.io/en/
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Figure 2: Interface of prototype for citable and reproducable data subsets from CSV files via Git versioning (Pröll
et al., 2016)

.

features offered by cloud storage providers such as Amazon’s S36 can be used to take care of versioning the files
stored.

Depending on the access mechanisms used, queries can be issued in multiple ways against data stored as files.
Frequently, dedicated scripts or access programs are being used to identify subsets, such as scripts identifying
a certain time span in a video stream, or via dedicated libraries that allow interacting with CSV files as if
they were relational databases supporting SQL queries (e.g., CSV2JDBC7). Any such scripts, representing the
’query language’ of such a repository, can be maintained, allowing a low-effort implementation and deployment
of the recommendations for, specifically, long-tail data settings. It is important to note that the implementation
and deployment of the functionality supporting (subset) citation for (static or evolving) file-based data can be
completely transparent to the user, making it a useful tool in many long-tail data settings (Pröll et al., 2016).

As a demonstrator, we present such an implementation supporting subset queries (or, of course, entire data
set downloads) for CSV files. To realize this we use Git as a versioning system, and optionally add CSV2JDBC
as a query interface to support subset queries.

Git is a distributed version control system for text-based artifacts, like source code. Extensions exist that
allow it to be also used for binary data content such as media files, for example, GIT-LFS8. In the last decade,
Git has evolved to the de-facto standard for managing source code, allowing for a variety of contribution
processes (German, Adams, & Hassan, 2016).

This offers a simple solution to storing reproducible data sets within Git repositories. However, the repository
has to ensure that the scripting language used to identify the subset is maintained. In addition to any script-like
interfaces, support for SQL-like query languages can be provided as well. Since both CSV and SQL are based
on a tabular view of data, fully harmonized CSV data can be easily mapped into relational database tables and
accessed via library functions supporting SQL-like queries on CSV files. Thus we are able to provide support
for subsetting using an SQL-like query language that can be executed on CSV files with the help of additional
libraries like CSV2JDBC. These queries, in turn, can be created through the user interface providing faceted
browsing functionalities: users can select the fields they want to filter by, provide selection values, and identify
by which column they want their data to be sorted in ascending or descending order.

When a researcher wants to create an identifiable subset, the selected columns, the filter parameters, and

6https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
7http://csvjdbc.sourceforge.net/
8https://git-lfs.github.com/
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Figure 3: Citable and reproducible CSV data subsets using Git without and with branching (Pröll et al., 2016)
.

the sorting information are stored in the (again Git-based) query store as query metadata files together with
the CSV file name and location and the execution timestamp. As each query metadata file has the unique PID
as file name, the query can be reexecuted based on the versioned CSV data set.

Listing 1 provides a simple example for creating such a subset of CSV data using the mathematical software
R9 on the Top50010 data set, which is updated periodically in the Git repository. Listing 2 shows the execution
of the script in a Linux shell.

Listing 1: R Script for Subsetting

# Create a su b s e t o f the top 5 o f the Top500 l i s t
args <− commandArgs( t r a i l i n gOn l y = TRUE)
inputdata setPath=args [ 1 ]
outputSubset=args [ 2 ]
data set <− read . csv ( inputdata setPath , header=TRUE)
subset <− subset (data set , Rank<=5, s e l e c t=c (Rank , S i te , Cores ) )
write . csv ( subset , f i l e=outputSubset )

Listing 2: Executing the Script

# Execute the R s c r i p t and ob ta in a sub s e t
# from the prov ided CSV f i l e
/usr/bin/Rscr ipt top5−subset . r /media/Data/Git−r e po s i t o r y/supercomputing/supercomputer . csv \
/media/Data/Git−r e po s i t o r y/supercomputing/supercomputer−top5 . csv

Such scripts are versioned in Git and are used to retrieve the same data set by reexecuting the script. This
is done by assigning a PID to each query, serving as an identifier in the Git repository, which is resolved during
data retrieval. Revisions of the data set are committed to the repository, where Git stores a commit hash and
the timestamp of the update. This first method is a simple way of storing reproducible data sets within Git
repositories in a working environment where data keep a clear history.

An extension to the basic model presented above brings several advantages to collaborative work environ-
ments. It is based on the concept of branching, which is a simple and straightforward task in Git. Branching
enables multiple researchers to work with different states of the data or files at the same time and is considered
a ’best practice’ in software development. Figure 3 shows a commit history in a repository with (a) a straight
commit line in the upper part of the figure and (b) a repository with history where a developer created a branch
base on commit C1 and later on merged the commit into the main branch. The data or files can be merged
later on with the main line or other branches again.

To retrieve the queries and reexecute them on the correct data set, the user provides the PID, which is
hashed to get the file name of the query metadata file. Next, the demonstrator checks out the query branch
and reads the query metadata file identified by the hashed PID. The demonstrator extracts and checks out the
commit hash and file name of the CSV data file from the read query metadata. This restores the CSV data
file from when the query was executed, and the system reexecutes the query script against the data file. The
application demonstrator, shown in Figure 2, is available on Github11.

3.3 XML Databases

A challenge when dealing with XML data is its inherent tree-like structure. Thus, (Huber, 2015) identified
an approach to make XML data sets stored in native XML databases citable. This method also makes use of
timestamps, versioning, PIDs, and query stores similar to the methods previously described.

9https://www.r-project.org/
10www.top500.org
11https://github.com/Mercynary/recitable
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Figure 4: Process to version a rename operation in the branch-copy approach for XML data (Huber, 2015)
.

The reference implementation works with two different open source native XML database engines, namely,
(1) BaseX12, and eXist-db13, both supporting XPath and XQuery but differing in their syntax and behavior.
Furthermore, two different approaches to versioning and timestamping have been realized and evaluated, one
relying on branch copying, the other on capturing the versions via parent-child relationships. Both approaches
suffer from the complexity induced by the fact that a range of different scenarios need to be covered to support
operations both on the hierarchy (element nodes) as well as attribute levels. The CRUD operations comprise of
(1) three types of Insert (element into element, attribute into element, text into element), (2) Replace (element
with element, attribute with attribute, text with text), (3) Replace Value (element with text, attribute with
text, text with text), (4) Delete (element, attribute, tetx), and two types of (5) Rename (element as text,
attribute as text).

In the first approach, each element node has two additional attributes capturing the add and delete times-
tamps, the latter being set to NULL upon insert. If a node is edited, the entire branch originating from that
element is copied, with the original being marked with a deleted timestamp, and the copied branch being set
active. Figure 4 shows an example of this process for the rename operation applied to an element. All other
operations (inserts, deletes, and replacements) of both nodes and attributes are handled accordingly.

For the second approach, only insert timestamp attributes are added for the top-level node that is added to
the hierarchy. Delete attributes are only added to the element node being deleted, marking the entire branch
as invalid. Attributes and text nodes are versioned via versioning blocks, which are children of their respective
element nodes. The existence of such a block indicates that edits happened to any of its elements.

While the first approach is conceptually simpler to implement, it obviously carries a massive storage overhead,
especially when the XML data set represents deep hierarchies. Also, the query execution times are lower for
the second approach, mostly due to the inefficiency of copying large branches in deep hierarchies, that make up
for the more complex processing required for the individual updates, with eXist-db showing significantly lower
performance than BaseX (9-15 sec for updates as opposed to 0.5 sec for flat hierarchies).

Another solution to archive, version, and query XML data is provided by XArch14 (Müller, Buneman,
& Koltsidas, 2008). This differs from the approach presented above in that it merges individual versions
of XML files and uses a dedicated query language to identify subsets rather than using XPath and XQuery
constructs. On the other hand, a performance evaluation demonstrates good performance and scalability due
to the optimizations possible by deviating from a native XML storage infrastructure.

Each data set has its own query store, within which each query element represents a query having several
child nodes storing metadata, such as the PID, execution timestamps, original and rewritten queries, MD5
hashes, and so on.

3.4 NoSQL-based Data Citation Support Added to CKAN

This reference implementation demonstrates a solution for NoSQL databases, in this case MongoDB15, a pop-
ular open-source NoSQL database engine. It is integrated into CKAN, a prominent Open Source data portal
platform16, but also integrates links to a source code repository to connect and serve both code and data. By
also integrating a handle service, it provides a full solution for supporting dynamic data citation within a data

12http://basex.org
13http://exist-db.org
14http://sourceforge.net/projects/xarch
15urlhttps://github.com/mongodb/mongo
16https://ckan.org/
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portal. It consists of four independent applications, a CKAN instance, a CKAN datapusher service, a Source
Code Repository, and a Handle registry service. Furthermore, there are four different storage containers. The
CKAN instance requires a storage to store all uploaded files and a database to maintain application-specific
data (e.g., credentials) and meta data of resources. These two containers are required by a default CKAN
installation, the remaining two storage containers, data and query store, are specific to this solution.

The CKAN extension consists of two plugins, the mongodatastore and the reclinecitationview plugin. The
first one is a novel DataStore implementation that aligns with the RDA Recommendations for Data Citation.
The second plugin was needed to additionally add the citation feature to the view where data sets can be
queried.

Data in MongoDB is organized in collections that consist of several JSON objects, which are referred to as
documents. Using the terminology of relational databases, the document corresponds to one row of a database
table and each attribute represents a column and its associated value. Every document has an id attribute
by default, which is of type ObjectId and maintained by the database. ObjectIds are 12-byte values consisting
of a 4-byte timestamp, a 5-byte random value, and a 3-byte incrementing counter. In order to maintain older
versions of a data set, the data store must not overwrite data records once they are updated. Therefore,
updates are added as new documents to the collection, while the older version of the record remains unchanged.
In other words, one document in the collection represents the state of a data record for a certain period of
time. This requires another ID in order to define the relation between data records and its states. In order to
define which point of time a certain document was valid, two additional attributes, created and valid to, are
added to the documents. The first attribute indicates when the document was added to the collection and the
second attribute indicates until when it was valid. The VersionedDataStoreController encapsulates access to
the MongoDB in a way that all changes (inserts, updates, and deletions) to the data set are tracked.

MongoDB queries are represented as JSON documents. Each attribute defines a filter that is applied on all
documents. A query extension approach was chosen to restore a historic state of the data set on query-time.
The idea is that for each query, conditions are added that only apply to the records that were valid at a certain
point of interest. In order to detect semantically equal queries, they have to be transformed to a normalized
form. As for the queries, the order of their attributes has no impact on the query result, they are sorted
alphabetically by key before they are processed by the database.

In order to reexecute queries that were submitted to the data store in the past, all queries, including their
metadata, are stored into a relational database. It contains all data that is required to reexecute a historic query
and subsequently validate the result set, that is, hash values for the query, result set, and assigned record fields
to identify query duplicates. As different scientific communities may require different information for citing
data sets, the information on record fields is stored as key-value entries in a separate table.

The entire software package, including the plugins as well as test data and evaluation scripts, is available as
OpenSource software on Github17.

4 Pilot Adopters and Deployments

Any technology can ultimately only prove itself by adoption and use, leading to the creation of value for the
user community. In this section we take a closer look at eight specific operational deployments and the variety
of design decisions taken. These pilots are (1) the Center of Biomedical Informatics (CBMI) implementing
the solution in an RDBMS setting with i2b2 as a repository for medical data; (2) the Virtual Atomic and
Molecular Data Centre (VAMDC), which is a network of distributed repositories operating via an XML-based
exchange protocol; (3) the Climate Change Centre Austria (CCCA), operating a repository of NetCDF files
queried via a Thredds server; (4) the Forest Ecosystem Monitoring Cooperative (FEMC, formerly the Vermont
Monitoring Cooperative, VMC), processing heterogeneous data ranging from databases to images; (5) the Earth
Observation Data Center (EODC), running a massive infrastructure serving Sentinel satellite images; (6) the
Deep Carbon Observatory (DCO), providing centrally managed object identification and access services for a
global community; (7) the xData platform operated by NICT for real time event monitoring and predictions; and
(8) Ocean Networks Canada, providing a comprehensive solution across the wide range of data types from more
than 400 different types of instruments, including real-time streaming data as well as from autonomous platforms
with specific transmission modes. While the actual code for each solution is tightly integrated with each specific
data repository setting, all adopters decided to release their implementations as open source modules for others
to adopt and adapt. Links to these are provided in the respective sections. Several other implementations
are being deployed in a variety of settings, for example, allowing citizen scientists’ contributions to data being

17https://doi.org/10.5281/zenodo.4015614
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Figure 5: Adoption of RDA WGDC Recommendation to Electronic Health Records (McIntosh & Vitale, 2017).

acknowledged via dynamic query resolution (Hunter & Hsu, 2015), or integration into the DENDRO data
sharing platform (Costa & da Silva, 2019).

4.1 Center for Biomedical Informatics (CBMI)

The Center for Biomedical Informatics (CBMI) at the Washington University in St. Louis (WU, now known as
the Informatics Institute) implemented several of the recommendations in an initial set-up of its i2b2-based18

repository of biomedical data. This repository contained electronic health record data and other biomedical
data extracted from primary systems serving as a data warehouse for studies. This means that when a patient
comes into hospital, data on normal care, diagnosis, procedures, medications, or any sorts of allergies are
recorded for operational purposes. This data is replicated into the biomedical repository to be used for research
(Center for Biomedical Informatics, Washington University, 2017). As part of a learning health system, this
system supported a number of research data resources. The heart of the system is the Research Data Core
(RDC), which is a confederation of data resources (see Figure 5) including i2b2. It comprised multiple database
instances for collecting and storing data as well as a variety of web applications that interact with one or more
of these databases. Collectively, these databases housed over six million patient records comprised of over 48
million visits, 114 million laboratory results, and 122 million text documents with daily updates. The initial
system has since been replaced, but the pilot experience still provides some interesting lessons.

The implemented recommendations included R1 - Data Versioning, R2 - Timestamping, R3 - Query Store
Facilities, R7 - Query Timestamping, R8 - Query PID, R9 - Store Query and R10 - Automated Citation
Texts, and have been described in greater detail in a prior publication(Gupta et al., 2017). Through a gap
analysis and further investigation, it became clear that it was necessary to implement the enhancements at the
source repository, which was built using PostgreSQL database management system–essentially a replicate of the
clinical data.

To employ the changes the approach took the work almost entirely to the DB level, with only minor adapta-
tions being required at the user interface level: In order to implement Data Versioning (R1) and Timestamping
(R2) each live data table in need of versioning was given an additional column holding a timestamp. A cor-
responding ’history’ table to hold historical data was created and is structured in the same way as live data
tables but without primary keys and unique constraints. A trigger to be called before insert, update, or delete
transactions was added to the live data tables. To allow a user to query all live and historical records in a
given table or tables as they are or were, views were created for each table. To limit the results to a certain
timestamp, a new limited access schema was built.

To incorporate Query Store Facilities (R3), Query Timestamping (R7), Query PIDs (R8) and to store
queries (R9), a function serving three purposes was implemented. It a) ensured the currently executing query
has been logged, b) returned a date and time value as well as c) a preformatted citation line. Hence, a query
ID was assigned to each new query, which was then stored in the DB and included in the citation text. The
Query Citations (R10) were implemented as a functionality within data broker views. When a new query was
received via the standard Web interface and run using these views, the data broker would get a) the data set for
the query and b) a preformatted citation line. The citation text always included the query’s PID. As a result of
these implementations, a previous data set as it existed at a specific point-in-time was successfully reproduced

18Informatics for Integrating Biology to the Bedside, Partners Healthcare Systems www.i2b2.org
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Figure 6: VAMDC Adoption: (a) Infrastructure set-up, (b) Query processing (Zwölf et al., 2017)

Figure 7: Functional overview of the query store at the VAMDC (Zwölf et al., 2017).

using only the PID as provided in a citation. Not all queries were immediately assigned a PID. They were first
assigned a temporary ID in a kind of ’shopping cart,’ from which the user could select those that were produced
in the data subsets to be used in a study, whereas the others were purged after some time.

These implemented improvements simultaneously increased efficiency while decreasing the cost of queries.
The average time of completing a data request was 20 hours. If this request was needed to be repeated (e.g., to
check data, to add parameters), it typically took almost the same amount of time. Assuming an unsubsidized
cost of 150USD/hr and an average of 20 hours per research request, 1 study (new or replication) would cost
3000USD. If a request needed to be replicated, the new request could be fulfilled on average in 3 hours saving
17 hours of time and 2,550USD. This work was initially funded through a 40,000USD grant, thus in less than
16 research requests for further data exploration, the investment will have paid off.

4.2 Virtual Atomic and Molecular Data Centre (VAMDC)

The Virtual Atomic and Molecular Data Centre (VAMDC) is a political and technical framework for operating
and sustaining a worldwide digital research infrastructure built over two European projects (Dubernet et al.,
2010; Albert et al., 2020). The e-infrastructure federates about 30 heterogeneous atomic and molecular databases
that are used for the interpretation of astronomical spectra and for the modeling in media of many fields of
astrophysics. Other application fields, cf. Figure 6a, include atmospheric physics, plasmas, fusion, radiation
damage. VAMDC offers a common entry point to all federated databases through the VAMDC portal 19,
providing a set of tools to retrieve and handle the data (Moreau et al., 2018)). Each node may use different
technologies and tools for storing data and is responsible for its data. New data may be added or new versions
of existing data may be provided. An ad hoc generic wrapping software, called the node-software, transforms an
autonomous database into a VAMDC federated database, called a data-node. Each data-node accepts queries
submitted in a standard grammar (VAMDC SQL Subset) and, by implementing an interoperable data access
protocol, provides output formatted into a standard XML file (VAMDC XML Schema for Atomic Molecular

19http://portal.vamdc.eu
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and Solid Data, VAMDC-XSAMS), shown in Figure 6b. The VAMDC data-citation implementation is based
over the Node Software technology (Zwölf, Moreau, Ba, & Dubernet, 2019).

Concerning the data versioning and time-stamping (R1 and R2), VAMDC has two different mechanisms:

• coarse-grained: a modification of any publicly available data at a given data-node induces an increment
in the version of the data-node. A notification mechanism informs that something has changed on a given
data-node, indicating that the result of an identical query may be different from one version to the other.

• fine-grained: The information contained in the Version element in the VAMDC-XSAMS standard. (Zwölf,
Moreau, & Dubernet, 2016) indicates which data have changed between two different data-node versions.

For extracting data from VAMDC, users may query directly a given known data-node or use one of the
centralized query-clients (e.g., the already mentioned VAMDC portal). In the latter case, the centralized client
software asks the registries what are the data-nodes able to answer and dispatches to them the query. Any
centralized client acts as a relay. This is completely transparent from the data-node perspective and a data-node
acts in the same way regardless the source of the query it is serving; when a data-node receives a query:

• it generates a unique query-token (this can be seen as a session token associated to the incoming query);

• it answers the query by producing the VAMDC-XSAMS output file, which is returned to the user together
with the generated query-token. The stable sorting (R5) is guaranteed by the node-software. The token
is copied both in the header of the answer and in the output file;

• it notifies the Query-Store (R3), providing the query-token, the content of the query, the version of the
node and the version of the standards used for formatting the output. It is worth noting that this process
is not blocking and has no impact on the existing infrastructure whatsoever: the data extraction process
is not slowed down. If the Query Store cannot be reached, the user will still receive the VAMDC-XSAMS
output file.

When the Query-Store service (R3) receives a notification from the data node, it stores the received infor-
mation and reduces the query to a standard form, using the VAMDC SQL-comparator library20 (R4), and it
checks if a semantically identical query has already been submitted to the same data-node, having the same
node version and working with the same version of the standards.

• If there is no such a query, the Query-Store service attributes a unique UUID and a timestamp to the new
query (R8 and R7), downloads the data, that is, the VAMDC-XSAMS output file from the data-node and
processes this file in order to extract the bibliographic information (each VAMDC-XSAMS file produced
by the VAMDC infrastructure includes the references to the articles used for compiling the data) as well
as metadata. The relevant metadata are stored and associated with the generated UUID. These metadata
are kept permanently (R9): the Query-Store service permanently keeps the mapping between the UUID
and the set of query-tokens assigned to a given query.

• If such a query is already stored in the Query-Store service, the new tuple (query time-stamp, query token)
is added to the lists of the other time-stamps already associated with the query.

The functioning of the Query-Store is asynchronous. This was a mandatory constraint in order to avoid
slowing down the VAMDC-infrastructure with a central bottleneck service. The unique identifier assigned to
each query is resolvable (R11), and is both human and machine actionable (R12). The associated landing page
provides the metadata associated with the query, as well as the access to the queried data and a BibTex citation
snippet (R10).

The VAMDC Query Store is interconnected to Zenodo: from the landing page displaying the information
about a given query, the user may with a simple ’click’ trigger the replication of the data on Zenodo, together
with all the metadata and bibliographic references. This procedure also generates a DOI as alternative PID for
the current query. The interconnection with Zenodo21 provides the Query Store with Scholix22 functionalities
and with lifetime access to the query-generated data.

This query store’s benefits include a) its transparent usage for users, b) the live monitoring of queries and
users, so that data providers can measure their impact, c) easy and automatized data citing and d) minimal

20https://github.com/VAMDC/VamdcSqlRequestComparator
21https://zenodo.org/
22http://www.scholix.org/
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Figure 8: CCCA Data Centre: Simplified structure of implemented server and hardware components for the
CCCA Data Centre environment: (i) CKAN web server, (ii) the application server for access, data management
used as query store, (iii) Handle.NET®Registry Server for PID allocation, and (iv) the Unidata Thredds Data
Server (TDS), NCSS Subset Service and features on Open EO support bedded with the RDA Adopotion Grant
Framework

.

impact on existing infrastructures. DB owners only have to install the latest VAMDC wrapping software version.
DB providers just have to fill a ’version,’ field which is the label of a version. The source code of the implemented
system is available on Github23. The effort required to design/implement the overall solution was about 20
person-months.

4.3 Climate Change Centre Austria (CCCA)

The Climate Change Centre Austria (CCCA) is a research network promoting climate research and climate
impact research. The CCCA—Data Centre, as one of the three CCCA departments, operates a research data
infrastructure for Austria with storage capacity of more than 700 TB embedded in a highly available Linux
Server Cluster and linked to the high-performance computing facilities of the Vienna Scientific Cluster and
the Central Institute for Meteorology and Geodynamics (ZAMG) as the national weather service. The service
portfolio includes a central access point for storing and distributing scientific data and information in an open
and interoperable manner. Starting with the initial tasks of setting up a data management framework for
heterogeneous climate information, the focus changed in 2016 to highly resolved regional climate scenarios.
These Austrian Climate Scenarios include climate parameters like surface temperature, precipitation, radiation,
and so on, and various derived climate indices, for example, summer days. Calculated records are available on
daily basis from 1970 up to 2100 in 1 × 1 km gridded data as multiple single files. The calculation process include
different ’representative concentration pathways’ (RCPs), ensembles of GCM (general circulation models) and
RCM (regional climate model) runs, which are combined with statistical methods for the integration of in-situ
observations for high-resolution conclusions. The open accessible entire data package for Austria includes over
1,200 files with a size up to 16 GB per file. These dependencies of different model ensembles and methods, as
well as uncertainties as statistical down-scaling effects, force a continuous correction of some single data files.
The interval between updates or new versions usually depends on the time frame of the funding schemes and
their research projects and happens approximately once per year.

The main motivation for setting up a web-based tool for dynamic data citation and its fragments was to
have a technical solution to align a persistent identifier with an automatically generated citation text.

23https://github.com/VAMDC/QueryStore/
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Figure 9: GUI of the subset creation function: (a) The upper part defines the parameter, or reuse an existing
query, defining a bounding box either by polygon or predefined administrative units, (b) allows choosing the
time range

.

Figure 10: Landing page of a data resource where the subset can be created. a) The visualization is a view
service (WMS), created by Thredds, and allows by activating the time control to visualize each time step up to
2100. b) A 2D timeline at a point of interest is processed on demand.
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The core component for the set up within the CCCA environment depicted in Figure 8 (Schubert, Seyerl,
& Sack, 2019) is the Handle.NET®Registry Server for PID assignment. For processing and creating data
fragments, the Unidata Thredds Data Server (TDS) in combination with NCDF Subset Services (NCSS) is
embedded. NCSS provides a catalog of parameters that allows the description of data fragments while retain-
ing the original characteristics of the data. These are geographic coordinates, date ranges, multidimensional
variables. NCSS uses “HTTP GET” request in the following structure:

Listing 3: NCSS Query via HTTP Get request

http ://{ host }/{ context }/{ s e r v i c e }/{data set } [ / data set . xml |
/data set . html | {? query } ]

where
{host } = se rv e r name
{ context } = ” thredds ” ( u sua l l y )
{ s e r v i c e } = ”ncss ” ( always )
{data set} = l o g i c a l path for the data set obta ined from the ca ta l og
data set . xml = to get the data set d e s c r i p t i o n in xml
data set . html = to get the human−r eadab le web form
data setBoundar ie s . xml = to get a human−r eadab le d e s c r i p t i o n o f the bounding boxes
{? query} = subset reques ted

The subsetting element {?query} allows a combination of different parameters, like the name of variables,
the location points or bounding box, arguments that specify a time range, the vertical levels, and the returned
format. Figure 8 provides an overview of the relationships between requests (blue arrows) and responses (orange
arrows) between the server, plus (aqua) alignment with PID Register. The application server takes the requests
via the Web server and generates URL-based (HTTP GET) requests with the subsetting parameters (subset
requests). These requests are stored in the query store and are assigned with the Handle identifier. Figure 9
illustrates the implemented components and gives an overview about the relationships between requests (blue
arrows) and responses (orange arrows) between the server. The application server takes the requests via the
Web server and generates URL-based (HTTP GET) requests with the subsetting parameters (subset requests).
These requests are stored in the query store and are assigned with the Handle identifier.

A rough estimate puts the effort required to implement the above processes and tools at around 1.5 person
months over a three months time period.

4.4 Forest Ecosystem Monitoring Cooperative (FEMC, formerly VMC)

The Forest Ecosystem Monitoring Cooperative (FEMC, formerly the Vermont Monitoring Cooperative, VMC)
is a collaborative network that monitors forest ecosystems. The FEMC provides a data archive and an access
and integration portal for the network to save data and to make them more available for assessment and research.
Understanding complex ecosystem processes requires cross-disciplinary work. Thus, the data comes from many
different fields in natural resources science and from diverse contributors, from citizen scientists to monitoring
professionals to researchers.

Much of the data in the system are highly dynamic as data are added or updated frequently, necessitating
versioning in order to cite the data. These data include observations of tree canopy condition, soil chemistry,
high elevation bird counts, and photomonitoring of alpine vegetation quadrants. When possible, data are stored
as tables in a relational database system that includes a metadata documentation workflow. Data that cannot
be stored as a database table–such as raster, vector, and image formats–are stored in a file system. Users
manage and access data through a web interface. Because the FEMC archive supports both monitoring and
research use cases, the ability to cite an evolving data set in a way that allows others to access that exact state
of the data used in a particular analysis is critical. FEMC sought to implement R1 – Data Versioning, R2 –
Timestamping, R3 – Query Store Facilities, and R7 – Query Timestamping.

The workflow that emerged to implement the recommendations covers three different steps: data addition
and editing, subsetting, and recovery. The data editing allows for provenance tracking so that a data set can
be modified without affecting the previous iterations of the data set. Users add data to the system, at which
point they can commit this to a version, preventing additional changes to the stored content. Modifications or
additions to the data set are tracked as subsequent versions of the same data resource, preserving the evolution
of the data set over time. When tabular data are updated to a new version, the database table storing the data
is updated to the new state, and the database operations required to roll back the database table to the previous
state are recorded. The system creates a result hash and a query hash to accompany the version identifying
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information as a way to check the validity of any rollback operations. For file-based data, the file is given a
unique name, registered in the version table, and stored in the file system, but the result hash is not created.
A URL and, if requested, a digital object identifier (DOI) are assigned to the new version as well. Researchers
can choose not to version the data they are providing, though they cannot switch off versioning once they have
created at least one version.

The subsetting workflow enables data managers to build a specific state of the data set by using a builder or
typing in SQL to work against a given version. It then shows the users the subset records matching that query.
Once satisfied, users can commit this subset as a version, and a unique URL and, if requested, a DOI are be
assigned in order to track the correct provenance. The recovery system restores previous versions by creating
a new version table from the current data table state, compiling query steps and walking the table back to the
prior state using stored SQL, or retrieving the appropriate file when stored in the file system.

For both subsetting and editing, timestamps of version commits are stored, tracked, and displayed to both
managers and researchers. While FEMC did not implement R4 – Query Uniqueness and R6 – Result Set
Verification, the current integration of query hashing and result set hashing in the versioning steps means that
implementation would not be a significant burden in the future. FEMC stores the original subsetting queries,
their associated metadata, unique URLs, and, when requested by the user, DOIs. No normalization is performed
on the queries, thus for the time being two semantically equivalent queries formulated in different ways will
get two different DOIs. However, identity of result sets can be determined by the result set hashes that are
computed (Duncan & Pontius, 2017).

Implementing these recommendations required several person-months of time, primarily due to the need to
adjust the historical data management workflow used by FEMC to be able to implement data set versioning.
FEMC sought a parsimonious solution that did not require storing copies of data in every situation, leading to
a lot of work to differentiate between additions and replacements. The implementation of the query store and
the initial steps toward verification of query and result sets was relatively straightforward, requiring less than a
person month of time. However, this upgrade solved several other issues in the FEMC archive, and thus taking
these steps to lay the groundwork for the recommendations was welcome. The biggest improvement aside from
addition of DDC capacity was the structure built to version data sets themselves. Previously, the same data
were being uploaded as entirely new data sets every time a change was made, and users then couldn’t figure out
which to use, or the previous data was being overwritten to provide the one authoritative data set, breaking
previous uses of the data. FEMC’s long-term monitoring reports24 were produced as a snapshot of the previous
year’s data in over a dozen key metrics. As monitoring data sets evolved, our site held only one representation
and thus FEMC was invalidating links in its own publications by subsequently updating data. It also improved
the culture of data management within the organization for FEMC’s own monitoring work, by providing a
clear point where FEMC staff certify the data produced as final and ready for distribution, such as our annual
forest health monitoring work25. Researchers have appreciated the certainty that comes from versioning, and
the dynamic data citation capabilities are now fully integrated into the data processing workflow in our forest
indicators dashboard26.

4.5 Earth Observation Data Centre (EODC)

The Earth Observation Data Centre for Water Resources Monitoring (EODC) is a processing and data backend
founded in 2014 and located in Vienna, Austria. It operates a multi-petabyte, scaled, storage infrastructure
connected to the Vienna Scientific Cluster (VSC) high-performance computing (HPC) system. It obtains
Sentinel 1-3 data from the European Space Agency (ESA) Program Copernicus. New data are added in up
to daily increments, depending on the satellite and sensor type. ESA releases data updates and corrections in
cases when one of the instruments used for the observation was wrongly calibrated or broken. These are rare
and never happened in the history of EODC so far.

To increase reproducibility of studies and support precise data citation, the existing systems were modified to
support precise data identification. The implemented recommendations include R3 - Query Store Facilities, R4-
Query Uniqueness, R6-Result Set Verification, R7-Query Timestamping, and R8-Query PID, with versioning
and timestamping (R1 and R2) already in place via the standard storage infrastructure.

Researchers do not run their experiments locally but on the environment of the central server. Therefore,
a definition of the processing steps and the input data is transmitted, for example, following the openEO
standard (openEO Consortium, 2020). The backend creates a new job following the definition and waits for the

24https://www.uvm.edu/femc/products/reports
25https://www.uvm.edu/femc/data/archive/project/forest-health-monitoring/dataset
26(https://www.uvm.edu/femc/indicators/vt
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Figure 11: Subsetting process in EODC
.

Figure 12: System architecture of EODC implementation
.
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Figure 13: Deep Carbon Observatory Architecture

researcher to start it. After doing so, the backend starts the processing, providing the researcher with status
information on request. When the backend finishes the processing, the researcher can request the result by
following the provided download link. After adding our data citation extension to the backend, the workflow
was unchanged, so researchers do not have to change the way to work with the backend.

EODC is a file-based earth observation backend, which uses a PostgreSQL (incl. PostGIS extension) meta-
database with an Open Geospatial Consortium (OGC) compliant Catalogue Service for the Web (CSW) interface
for querying. It represents a central service for data-driven applications of EODC using queries via XML requests
and responses on a publicly available endpoint27. The unique path to a file is the identifier and used for the
versioning, since every data update results in a new path. The creation timestamp is persisted in the meta-
database, which we use to query for data versions that were available at a particular time (see red marker
in CSW Query excerpt provided in figure 11). The query store is implemented as an additional table in the
meta-database for the job executions. The unique query is defined as an alphabetically sorted JSON object
of the filter arguments since the order of the filters makes no difference in the outcome. The filter arguments
consist of the satellite identifier, the spatial extent, the temporal extent, and the spectral bands of the satellite.
The result of the query is a list of files with a fixed order defined by the CSW standard (Gößwein, Miksa,
Rauber, & Wagner, 2019). For fast comparisons, the hash of the resulting file list and the hash of the unique
query are stored in the query table. During every job execution the query PID of the input data is added to
the job meta-data, either by generating a new query PID or by using an existing query PID if the same query
was executed before. Figure 12 provides an overview of the system architecture of the EODC extension. The
Query Record Handler is responsible for the uniqueness of the query entries and adds the query PID to the job
meta-data (Job Context Model).

The effort for implementing the solution was roughly one person month. The most challenging part was the
integration with the standards underlying the system of EODC (OGC, CSW, and PostGIS) and to set up a
test instance of the actual server. The implementation was relatively straightforward, since the versioning and
timestamping was already in place for the GeoGIS database. It was limited to extending the query execution part
of the backend and creating the human-readable as well as the machine-actionable landing page. Additionally,
the citation and referencing functionality was integrated into the job definition part, so that other users can use
the exact input data of others, by providing the data PID.

4.6 Deep Carbon Observatory

The Deep Carbon Observatory (DCO) is a global community of multidisciplinary researchers unlocking the
inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of
carbon. It started as a 10-year initiative that produced significant data and scientific results.28 DCO organized
a Data Portal that provides a centrally managed digital object identification, object registration, and metadata

27https://csw.eodc.eu/
28https://deepcarbon.net/vivo
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Figure 14: DCO Subsetting Process
.

management service that provides discovery and access to diverse data for the DCO community.
The DCO Data Science Team at the Tetherless World Constellation of Rensselaer Polytechnic Institute

maintains the DCO Data Portal outlined in Figure 13. The Portal makes extensive use of Persistent Identifiers,
most notably something called the DCO-ID. The DCO-ID is a Handle and is similar to the Digital Object
Identifier (DOI) for publications, but it extends the scope to many more types of objects, including publications,
people, organizations, instruments, data sets, sample collections, keywords, conferences, and so on. Each DCO-
ID can redirect to the Web profile (often a landing page) of an object where detailed metadata can be found.
In the DCO Data Portal, each object is the instance of a class. The metadata items describing an instance are
properties. All those classes and properties are organized by the DCO ontology (Ma et al., 2017; Prabhu et al.,
2020).

In implementing the WGDC Recommendation, the team essentially walked through the 14 recommendations,
assessed where they were in terms of compliance, and then made adjustments accordingly. Most of the work
was conducted by a summer undergraduate student hired as part of an RDA/U.S. adoption grant. She required
expert guidance, however, from graduate students well-versed in the portal as well as senior staff able to advise
on changes in policies and workflows. A number of the 14 recommendations were already implemented, but
several required some thought and adaptation. In particular:

R1 Versioning. After considering several options, the team decided the best option was to add the PROV
property prov:wasDerivedFrom to the DCO ontology and knowledge graph (Figure 14).

R3 – 9 Query store and management. The DCO portal only provides queries of and access to collection level
data. It does not allow querying subsets of the collections. Nonetheless, the team added a mechanism that allows
portal users to store a query that is a URI. They also updated DCO-ID instances with a prov:generatedAtTime
relationship from their Handle records. When a user selects to store a query, the particulars of the current
query, that is, search keywords, values of filter facets, ordering, and so on are stored along with a standard
representation of the current date/time for future recall. When a stored query is rerun, the query is executed
along with the recorded original date/time such that it only records those DCO IDs minted prior to the query
date are returned. This required tighter coupling between the portal and the Handle server and additional
interface options to save a query and repeat with a specific timestamp.

This query management process added functionality to the portal, but it did not enable citation of subsets
of collections (although it does capture relevant versions). That said, the team was able to reapply the portal
technologies to enable search and access to a large collection, the Global Earth Mineral Inventory. This allows
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Figure 15: Data provenance using dynamic data citation on xData Platform.

Figure 16: Example of dynamic data citations on xData Platform.

citation of subsets of that collection (Prabhu et al., 2020).
R13 Technology Migration. This was a policy effort not a technical effort. A graduate student with a

background in business and policy developed a draft migration plan, which was reviewed and approved by the
overall DCO Portal team. The critical issue will be R14 actual implementation and verification, which may
need to happen soon.

Overall, the robustness and semantic flexibility of the DCO portal architecture allowed for a straightfor-
ward implementation of almost all of the WGDC Recommendations. The project also demonstrated that the
technology can readily be transferred to other data collections. The challenge will be in sustaining and even-
tually migrating the system. This has emerged as a critical issue with the formal end of the DCO project.
This is a larger issue than dynamic citation, however, and illustrates the challenges of sustaining research data
infrastructure in general.

4.7 xData Platform at NICT

The Big Data Integration Research Center at the National Institute of Information and Communications Tech-
nology in Tokyo (NICT) develops a data analysis platform, called xData Platform, on NICT Integrated
Testbed. It aims at collecting heterogeneous sensing data from various data sources, then discovering and pre-
dicting associations of complex events in the real world for providing actionable information (Zettsu, 2019). For
example, it enables predictive modeling of traffic obstructions caused by extraordinary weather based on asso-
ciation mining between weather observation data and traffic monitoring data for route navigation applications.
Multiple domains of data sets are being collected by platform users such as weather observation data (pre-
cipitation radar, meteorological stations), atmospheric observation data (air pollution observations, personal
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environment sensors), traffic monitoring data (congestion, prove car), and lifelog data (fitness sensors, camera
sensors).

The xData Platform consists of a database server, called Event Data Warehouse, and APIs for collecting,
associating, predicting and distributing data sets. The Event Data Warehouse transforms the data sets into a
common format, called event data, for storing heterogeneous sensing data in an interoperable manner. Through
the APIs, a transaction data table is created by joining multiple event data onto spatial and temporal attributes.
Cleaning and tailoring the transaction data, predictive modeling of associative events is processed based on data
mining and machine learning methods like frequent itemset discovery and deep neural networks. The prediction
results are then distributed in application-friendly formats like JSON. For the purpose of tracing and verifying
the cross-data analysis process, the xData Platform provides a data provenance function. As shown in
Figure 15, the data provenance function captures a workflow showing how data sets are selected, processed and
generated by the APIs during execution of an analysis process. A programming library is provided for capturing
the provenance information (e.g., provenance.process(API)).

Dynamic data citation is a key for realizing the data provenance function for sensing data. Adopting the
R3 (Query Store), a dynamic data citation is implemented based on a ’view’ of a data table in Event Data
Warehouse, which is a database object containing a query to a database table for selecting a target data
set dynamically. Concerning the R1 (Data Versioning) and R2 (Timestamping), dynamic data citation is
represented by combination of a table name and a timestamp of view creation. Figure 16 shows an example of
dynamic data citation, where two different views are created from a growing archive table of rainfall sensing data
“xrain contour” for citing the data set available at two different execution times of a workflow. The view-based
dynamic data creation is generated automatically by the provenance library (R10 - Automated Citation Text).
When provenance.process(API) is invoked for an API taking a growing archive table as an input or updating
an existing table, a dynamic data citation is created for a (materialized) view selecting a snapshot of currently
available data set from the table (R6 - Result Set Verification, R7 - Query Timestamping).

Tracing provenance information enables users to resolve derivations between the dynamic data citations.
Though a provenance visualization tool integrated with an IDE, xData Platform users can use it for verifying
credibility of a cross-data analysis result using individually created data sets. It is also used for managing
different combinations of inputs, outputs, and parameters of a prediction model for its fine-tuning based on
different hypotheses in data science work. We are also extending it to a distributed collaborative environment
by introducing a location-identification mechanism like URI to the dynamic data citation.

4.8 Ocean Network Canada

Ocean Networks Canada (ONC) operates observatories and platforms in coastal, deep-ocean, and polar en-
vironments. The majority of data streams are real-time from cabled observatories such as the NEPTUNE
observatory in the North East Pacific, but there are also autonomous and mobile platforms with other data
transmission modes. In addition to serving these data management needs, ONC fulfills a repository role for
partners spanning government, nonprofit, industry, and First Nations. Over 400 instrument types are sup-
ported, representing thousands of instruments and deployments. Data sets hosted at ONC are highly dynamic,
changing over time as new records are added and as errors are corrected. In order to introduce data citations
within ONC’s digital infrastructure, known as Oceans 2.0, the MINTED (Making Identifiers Necessary to Track
Evolving Data) project (Ocean Network Canada (ONC), 2020) was awarded funding through CANARIE’s Re-
search Data Management program. Figure 17 shows the relevant relationships between Oceans 2.0 and external
entities.

Important considerations when assigning data set identifiers include data set granularity conventions, part-
ner recognition, and geospatial metadata. After carefully considering data set boundary options (e.g., time,
geography, instrument type, platform, data processing level) and constraints (DataCite metadata kernel, con-
tributor attributions, repository architecture), it was decided that one deployment of one device would represent
one data set, that is, a DOI registered at DataCite. Attributions to organizational data partners are included
in the DataCite entries, including Research Organization Registry identifiers when available. Although geospa-
tial extent metadata is not required by DataCite, the latitude and longitude range is deemed necessary by
ONC since location is an essential aspect of ocean data discovery. The implementation used at ONC supports
fixed-position, mobile, and remote sensing instruments.

The query store–related recommendations were mostly well-aligned with existing infrastructure. The data
discovery interfaces within Oceans 2.0 allow researchers to access subsets of data sets based on their selected
criteria of time, variables, formats, and data product processing parameters. These query details are stored
within a relational database and are assigned a resolvable internal identifier, but were not normalized for
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Figure 17: The ONC Oceans 2.0 system (in blue), and third party sources and applications (in orange). Dotted
lines indicate aspects that were added, while all ONC components were modified. Modifications included an
extended data model, additional web services, integration of third party APIs and data citation features.

Figure 18: Landing page of a data set, including subset query details shown on the right hand side.
(https://data.oceannetworks.ca/DatasetLandingPage?queryPid=8298007)
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uniqueness (this was deemed low priority due to low likelihood of exactly the same queries, and since it can be
reconsidered in the future due to saving all queries).

Landing pages and web services provide metadata and citation text for both full and subset data sets (ac-
counting for requirements R10, R11, and R12). An example landing page is shown in Figure 18. The citation
text is following conventions from the ESIP Data Citation Guidelines for Earth Science Data, Version 2 (ESIP
Data Preservation and Stewardship Committee, 2019). A Technology Migration Policy was established to en-
sure sustainable resolution of data sets (related to R13 and 14), including mitigating measures like unit tests,
regression tests, workflows, and comprehensive documentation. Data stewards use tools in Oceans 2.0 that au-
tomate DOI minting using DataCite services, assuming that the necessary metadata exists and using algorithms
to construct data set titles and abstracts. Data stewards verify the data citation as part of their device workflow
commissioning phase, in case any of the metadata was not correct at the time of minting. Data set versioning
(R1) results in a new DOI that is associated with its predecessor, using a framework that can capture and
display provenance details. The ONC implementation is based on a batch system, which aggregates versioning
triggers (e.g., calibration formula change), data versioning tasks (e.g., reprocessing), and DataCite DOI updates
(e.g., new DOI minting, populating related identifier fields using relationship types “isPreviousVersionOf” and
“isNewVersionOf”). In the future, it is intended to reformulate the provenance information in terms of W3C
PROV ontology (based on agents, activities, and entities). The versioning history is also displayed on the
landing page. Additional work planned includes more explicit end-user support, version notification services,
ORCID integration, citation metrics and more. The initial work using these RDA recommendations provided
the foundation upon which enhancing services and features can be added.

5 Discussion and Lessons Learned

Data citation is still an emergent practice. While there is broad acceptance in the information science commu-
nity, as evidenced through the Joint Declaration of Data Citation Principles (Data Citation Synthesis Group,
2014), the actual practice is still evolving, especially for citing dynamic data (Parsons, Duerr, & Jones, 2019)
Nonetheless, multiple implementations both conceptual and in practice, especially those briefly presented in
this article, suggest that the RDA Recommendations present a valid, viable, and adaptable approach that may
be emerging as a community standard. It is also clear that the specific implementation within a repository
is highly contextual. The fourteen recommendations serve as guiding principles that inform specific technical
decisions for a particular data management system. In this sense the recommendations do, indeed, work for all
kinds of data and in a diversity of settings.

Despite this apparent success, repositories can still find it daunting to implement the recommendations.
Indeed, most of the pilots received additional funding for implementation. This is understandable. Data
stewardship is an unending (underfunded) and increasingly complex process. We have found that certain
questions or concerns frequently arise for which we now have answers based on real-world experience. Therefore,
the rest of this section is a sort of ’FAQ’ that may help address the concerns of future adopters.

Do the recommendations work for any kind of data? Yes, it appears so.
The solutions presented include small-scale textual data, relational databases (MySQL, PostgreSQL), NoSQL

Databases (MongoDB), native XML Databases (BaseX, eXist-db), filesystems managed standalone or in combi-
nation with distributed database systems such as GeoGIS, or multidimensional data cubes such as, for example,
NetCDF files. Queries include dedicated scripts in R or using Java libraries mimicking database functionality
over CSV files, SQL, XPATH, dedicated query languages for NoSQL databases, bounding boxes drawn on a
map, and specific interfaces for data cubes such as NCDF subset services for NetCDF files. Neither conceptually
nor in practice have we found a data type or query structure where the recommendations would not be feasible
to implement.

Do all updates need to be versioned? Ideally, yes. In practice, probably not.
Settings that see extremely high-frequency updates over massive amounts of data may face a challenge in

maintaining ALL states that ever occurred. We propose that in settings where not all states of data that ever
existed need to be documented (e.g., for accountability reasons) or where states that were never read (i.e.,
updates to the database without any intermittent read operations to that data, data could be overwritten
without versioning). Alternatively, versioning at lower frequencies that serves the needs of the respective
domains may be a solution as well. In such cases, it should be made clear that only queries selecting data from
certain ’stable states’ are reproducible, clearly separating data for live-tracking and monitoring from research
data serving as a basis for studies and decision-making. Similarly, when massive data volumes create economic
challenges in maintaining multiple versions, such as reprocessing large numbers of satellite image data, respective
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trade-offs must be considered and some versions must be deprecated. In all cases, a recurrent query should
result in a meaningful result even if it is to state that the particular version of the data is no longer available
(see next question).

May data be deleted?: Yes, with caution and documentation.
The recommendations do not prohibit deletion. States may be overwritten and earlier versions of data

may be deleted. However, as with any action impacting reproducibility and transparency of experiments, this
should follow a well-designed and well-documented process. In accordance with standard citation guidelines,
the metadata describing any subset rendered irreproducible due to deletions, should remain available, that is,
the meta-information provided by the query store should be maintained.

What types of queries are permitted?: Any that a repository can support over time.
Queries can be of any type as long as the repository can assure their identical reexecution across technology

migrations over time. Query constructs that may see changing semantics or may face numeric inaccuracies
(e.g., by integrating more complex processing or mathematical constructs as part of queries) should be avoided.
We recommend a clear separation of data subset selection processes and data processing and analysis steps.
We assume that certain queries are sufficiently well-defined and precise in their computation that they can
be migrated across a range of technological platform changes. These may include counts, min and max value
determinations, ranges in defined spaces of time, geography, and space; and type queries on well-established
categories.

Does the system need to store every query?: No, just the relevant queries.
Several pilots allow the user to decide when a query should persist. It is important to allow users to explore,

refine, and revise their queries. For example, CBMI used a ’shopping cart’ approach and DCO allows users to
decide when they want to ’share’ a PID for a specific query.

Which PID system should be used?: The one that works best for your situation.
The recommendations are neutral to the actual PID system being used. However, it is highly recommended

to adopt a system that is widely used within the community, and that allows references to be easily and
transparently resolved. Some of the pilots use established systems like DOIs or Handle.net, while others have
chosen to resolve the query identifiers themselves. Other aspects of PID systems, such as external visibility, use
by aggregators, or cost aspects may also influence decision-making. This is, for example, demonstrated by the
VAMDC implementation pushing the information to Zenodo to issue a DOI to connect to the Scholix initiative.

When multiple distributed repositories are queried, do we need complex time synchronization
protocols?: No, not if the local repositories maintain timestamps.

As the VAMDC deployment shows, no stringent time synchronization is required. As query stores are local
with the data provider, only local timestamps are relevant. Queries distributed over a network of nodes are
stored with one local timestamp at the node that answered the query, which, in turn, distributes the query and
receives answers from the distributed nodes with their local timestamps of execution.

How does this support giving credit and attribution?: By including a reference to the overall data
set as well as the subset. The recommendations foresee two PIDs to be listed: one for the immutable, specific
subset identified by a query at a given point in time, and one for the evolving data source. This is similar to
conventional references in the paper world, where both a specific paper (immutable) is cited within the context
of an (evolving) journal or conference series. By having these dual identifiers, attribution can be traced at the
institutional level while supporting precise identification for reuse. The recommendations were originally geared
toward the reference aspect of citation rather than the credit aspect, but they have also been repurposed to
provide fine-grained credit as well. For example, Hunter et al. (Hunter & Hsu, 2015) demonstrate how the
recommendations can be adopted as a mechanism to identify and credit individual, volunteer contributors to a
large citizen-science data set of bird observations.

How does this support reproducibility and science?: By providing a reference to the exact data
used in a study. The information required to precisely identify any arbitrary subset of data (including even the
empty set, i.e., a query that returns no result!) comes ’for free’ in a very precise manner as actually executed
by a subset selection process. Storing this information provides a more precise definition than natural language
descriptions in the methods section of a paper may be able to provide. It also allows the PID of that data
subset to be used as an input parameter into other processes, thus easing the creation of meta-studies or the
continuous monitoring of specific analyses.

Does this data citation imply that the underlying data is publicly accessible and shared?: No.
The citation should, as usual, lead to a landing page providing relevant but nonsensitive metadata as well as
information on access regulations and process to request access if possible. These should be both human as well
as machine processable to support automation.
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Why should timestamps be used instead of semantic versioning concepts?: Because there is
no standard mechanism for determining what constitutes a ’version.’ Contrary to the software world, where
semantic versioning is widely adopted, it is hard to apply stringent protocols to define the difference between
major and minor updates to data. While in the software world, major releases are often those that break certain
interfaces or introduce significant new functionality, whereas minor releases comprise mostly bug fixes and other
nonfunctional improvements, such differences hardly exist with data. Fixing a spelling mistake in a data record
will make a difference to data sets extracted from the database with that record suddenly being (no longer)
found after the correction. Translating attribute names, changing encodings, or increasing the precision of
numeric representation will have an impact on subsequent computations and may thus lead to artifacts, rather
than referring to small and large differences in data; it thus seems recommended to refer to ’the state of the
world at a given point in time,’ which—as a concept—works across all disciplines and data types.

How complex is it to implement the recommendations?: It depends on the setting. The difficulty of
implementation obviously depends on the complexity of the data infrastructure, the type and volume of data
and changes of the data, as well as the query processing load, among other aspects. Most pilot adopters have
reported effort in the order of a few person months spread over a period of about six months to to a year. The
effort was greater for the complex distributed environment in VAMDC. The ONC effort was quite significant,
but one could argue that the recommendations may have saved effort by providing a guiding framework for their
system upgrade. Note also, the recommendations do not need to be rolled out in a big-bag scenario across all
data sources at once; incremental approaches deploying different recommendations over time or for individual
data products can also provide benefit.

Why should I implement this solutions if my researchers are not asking for it or are not citing
data?: Because it’s the right thing for science. This is a kind of chicken-and-egg problem. Solid scientific
practice requests researchers to meticulously describe the data used in any study. This is currently extremely
cumbersome, with researchers spending effort on precise descriptions in their methods section. The complexity
as well as lack in precision discourages reuse of data and lowers reproducibility of scientific research. If we are able
to provide mechanisms that make citing data as easy (or even easier) than citing papers, researchers will be more
willing to do it, although any such cultural change will require time in addition to the functionality actually
being available. This is all part of creating the necessary infrastructure for open, robust, and reproducible
science. It will be an incremental process. It is also worth noting, as discussed below, that all the pilots gained
additional value through improved data stewardship as well.

6 Conclusions

Since the RDA Recommendations on Dynamic Data Citation were released 5 years ago, they have been suc-
cessfully implemented by a number of institutions in a variety of settings around the world, several of which
have been illustrated here. Not all of the pilots described have implemented all 14 of the recommendations
(arguably R13 and R14, Technology Migration and Verification, remain somewhat untested), but all the pilots
found benefit in implementing even a subset of the recommendations in terms of improved data processes,
data-quality aspects, and policy decisions. All the implementations required nontrivial and sometimes major
work, but all found it to be a worthwhile effort. In some cases, such as CBMI, the ability to easily repeat
past queries clearly saved the repositories and their users time and effort. In other cases, such as FEMC and
ONC, the pilots reported positive user feedback and extension to other tools. In all cases, repository systems
were made more robust and trustworthy: ONC was guided through a major system upgrade; DCO and NICT
improved their versioning and provenance; CCCA and FEMC improved their data selection processes and GUIs;
most pilots enhanced the information on data landing pages; and all pilots have a clearer and more-documented
understanding of their data management processes as well as a clear statement on data citation.

While the actual technical solutions differ, the principles were feasible across all settings. We have not
identified a setting so far where they would not work, neither in practice nor conceptually in numerous discussions
at the biannual meetings of the WGDC and at several other workshops. Despite the variance in technical
solutions, the effort is primarily technical and can be implemented in a gradual or phased approach. It is the
cultural and policy aspects of citation that remain the most challenging.

First off, citation is still not a cultural norm in most of the scientific community, and even when journals
request or require data citation, there is little, if any, consideration of the type of dynamic citation we describe
here. Nonetheless, data citation is a growing concern that is rapidly being implemented in some disciplines
such as the Geosciences (Stall et al., 2019), and there is growing expectations around scientific validity and
reproduciblity (Fanelli, 2018). At the same time, the community recognizes the critical importance of PIDs in
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making data ”FAIR” — findable, accessible, interoperable, and reusable (Wilkinson et al., 2016). We hope that
making precise reference easy and transparent for the researcher will help address these issues.

We also found it important to consider the multiple concerns of citation. Data citation is defined as ”a
reference to data for the purpose of credit attribution and facilitation of access to the data” (Task Group on
Data Citation Standards and Practices, CODATA-ICSTI, 2013). In this work, we have been primarily focused
on the reference and access aspects of this definition. We have paid less attention to credit attribution. As
discussed, we maintain the same high-level, author-style credit that comes from citing the whole data set, and at
least one project has used the approach to provide fine-grained credit to individual data contributors (Hunter &
Hsu, 2015), but credit has not been our focus. Indeed it is unclear as to whether citation is the best or primary
way to credit data contributors and stewards despite a growing recognition that they should be credited (Dosso
& Silvello, 2020; Parsons et al., 2019; C. Borgman, 2016). Regardless of how credit schemes for data evolve, it
will be useful to precisely reference a contribution.

Secondly, it is the policy considerations embedded in the 14 recommendations that tend to be the most
difficult. These emerge primarily in data versioning (R1) and in technology migration and verification (R13 and
R14).While versioning is, in principle, a pretty well-defined concept, the best way to implement it for any given
data source is a complex problem in its own right. A dedicated RDA working group29 is investigating different
approaches to versioning. Guidelines for what is considered a meaningful difference or relevant time-granularity
as well as retention policies will require discipline-specific agreement. Yet if reproducibility is a goal to be
met, and data is evolving, then ensuring that previous states of a data collection can be reconstructed is an
unavoidable requirement.

Technology migration is also a well-defined concept with great complexities. The ISO standard Open Archival
Information System Reference Model (International Organization for Standardization, 2003) defines ’long-term’
as ”a period of time long enough for there to be concern about the impacts of changing technologies.” In other
words, it is a very contemporary concern. Many repositories now see media and other technical migrations as
operational concerns. Data infrastructures require perpetual maintenance, and this work, while critical, is often
invisible, undervalued, and underfunded (Olson et al., 2019; C. L. Borgman, Sands, Darch, & Golshan, 2016).
Maintaining precise identification of data may be cumbersome, but it is clearly an essential aspect of archiving.
Indeed, one might consider the maintenance of reference schemes almost as essential as maintaining the data.
Data are worthless unless you know what they are and where they are. This is why libraries are some of the
longest living institutions on the planet.

Overall (while we are admittedly biased), we find that the RDA Recommendations on Dynamic Data Citation
have shown to be a robust and viable approach to precisely identifying arbitrary subsets of data so that they can
be reproduced. This has multiple scientific benefits. Indeed, the highest benefits are not yet fully realized. PIDs
provide machine-actionable, precise specifications of input data and may serve as input parameters in analytical
processes and models. This greatly simplifies automation and enables automatic study reexecutions when, for
example, code in a library has changed, or reexecuting the same analysis on the same semantic definition of a
data subset but at a newer state. If machines can be unambiguously and repeatedly told exactly the data in
question, it could lead to dramatic improvements in the quality and efficiency of data processing, data analysis
pipelines, and modeling.
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