
Software Protections
Theory, practice, and recent advances

19.11.21 Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser Page 2

Setting the scene

19.11.21 Page 3

Setting the scene

Software containing a secret (e.g.
a cryptographic key)

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 4

Why software protections?

Protection of some secret in software!

Cryptographic
key

System
architecture

Sophisticated
algorithmCopy-

protection
mechanism

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

11/19/21 Page 5

Attack scenarios

Analysis Modification Distribution

Obfuscation Tamper-
proofing Marking

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 6

Two major research directions

Obfuscation based on
increasing code

complexity

Obfuscation based on
cryptographic primitives

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 7

Definition by Collberg et al.

(Collberg et a. 1997)

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 8

Source: https://ascii.co.uk/art/perl

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 9

Classification of obfuscating algorithms

Data obfuscation Static obfuscation Dynamic obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Make data look different

• Goal: An attacker is unable to locate data based on its known structure

• Example: AES key
◦ 128, 192, or 256 bit
◦ High entropy
◦ Often: pre-calculated round keys after the main key
◦ aeskeyfind: program to locate an AES key in a captured memory image

19.11.21 Page 10

Data obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 11

Data obfuscation

Reordering data Changing encodings Converting static data to
procedures

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Variables can be split into two or more pieces
◦ Mapping managed by two functions (splitting at obfuscation time,

reconstruction at runtime)

• Example: Splitting booleans
◦ Split a boolean variable x into two parts p and q
◦ p and q shall be set in different parts of the program
◦ Encoding: Choose one of the representations randomly
◦ Decoding: Many possibilities

- Check, whether p == q
- Calculate p XOR q, with „true“ ... 1

19.11.21 Page 12

Reordering data x p q

true false false

false false true

false true false

true true true

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 13

Classification of obfuscating algorithms

Data obfuscation Static obfuscation Dynamic obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 14

Static code rewriting

Opaque
predicates

Aliasing

Inserting
dead or

irrelevant code

Control flow
obfuscation

Replacing
instructions

Parallelized
code

Reordering

Name
scrambling

Loop trans-
formations

Removing
standard

library calls

Function
splitting/

recombination

Breaking
relations

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Opaque expression: Expression whose value is known at obfuscation time,
but difficult for an attacker to figure out

• Most common are opaque predicates (boolean valued expressions)

19.11.21 Page 15

Opaque predicates

PT PF P?
true true truefalse false false

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 16

Opaque predicates

x mod 2 = 0

P?

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 17

Opaque predicates

x2 mod 2 = 0

P?

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 18

Opaque predicates

(2x) mod 2 = 0

PT

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 20

Name scrambling

public long n6aWsw(float oTA8zU, float 9npG3M)
4kZLih = oTA8zU * 9npG3M;

return 4kZLih;
}

public long convert(float amountDollar, float rate)
amountEuro = amountDollar * rate;

return amountEuro;
}

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 21

Classification of obfuscating algorithms

Data obfuscation Static obfuscation Dynamic obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 22

Dynamic code rewriting

Packing/
Encryption

Hardware-
assisted

obfuscation

Dynamic code
modifications

Virtualization

Environmental
requirements

Anti-debugging
techniques

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• One of the most advanced techniques for binary obfuscation

• Converting the program’s functionality into byte code for a custom virtual
machine interpreter that is bundled with the program

• The virtual machine interpreter and payload can be different for each
instance of the program (polymorphism)

19.11.21 Page 23

Virtualization

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 24

Kochberger, P., Schrittwieser, S., Schweighofer,
S., Kieseberg, P., & Weippl, E. (2021). SoK:
Automatic Deobfuscation of Virtualization-
protected Applications. In The 16th
International Conference on Availability,
Reliability and Security.

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• In contrast to cryptography, it is very difficult to make a statement about the
strength of an obfuscation

• Protection strength depends on a variety of parameters, including the
motivation and creativity of a human analyst

• Collberg et al. proposed a taxonomy for obfuscations in 1997
◦ Potency, resilience, cost, stealth

19.11.21 Page 25

Protection evaluation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• A potent obfuscating transformation makes at least one analysis
method harder to perform and no analysis easier

• Mila Dalla Preda1 presented a potency framework based on abstract
domains
◦ Comparing the properties that are preserved by obfuscation

transformations
◦ A transformation that preserves more properties is weaker than one

than preserves less
◦ Often, domains of obfuscating transformations are not comparable
◦ Example: (very simple) data obfuscation

19.11.21 Page 26

Potency

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

1 Mila Dalla Preda. Code Obfuscation and
Malware Detection by Abstract Interpretation.
Ph.D. thesis, Dipartimento di Informatica,
Universita’ di Verona, 2007.

19.11.21 Page 27

Potency

Source: Surreptitious Software, C. Collberg and J. Nagra

Two simple data obfuscations Properties Sign and Parity

Both obfuscations
preserve the Sign

property

Only 𝜏2 preserves
the Parity property

𝜏1 preserves less, thus is more potent

𝝉 1(x) = 2 · x
𝝉 2(x) = 3 · x

Sign(x) =

Parity(x) =

-1 if x < 0
0 if x = 0
1 If x > 0{
0 if even(x)
1 if odd(x){

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• How much more obscure (complex, unreadable) is an obfuscated
representation of a program (for humans)

• Often evaluated with software complexity metrices
◦ E.g., counting textual properties of the source code, cyclomatic complexity
◦ Usually, the goal in software engineering is to make code less complex
◦ A potent obfuscating transformation makes code more complex

• QMOOD (Quality Model for Object-Oriented Design) for Java code
◦ Metric for understandability including abstraction, encapsulation, etc.
◦ Relative metric that can only be used to compare two program versions

• Visual Studio Code Metrics

19.11.21 Page 28

Potency

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 29

Potency

• This obfuscating transformation is potent (it makes the code more
complex)

• However, is it almost useless, because it can be undone easily

Source: Collberg et al. (1997). A taxonomy of obfuscating transformations. University of Auckland

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Strength of a transformation against an automatic deobfuscator program

• Two properties
◦ Programmer effort

- The amount of time required to construct an automatic deobfuscator for a
particular obfuscating transformation to effectively reduce its potency

◦ Deobfuscator effort
- Execution time and space required to run the deobfuscator

19.11.21 Page 30

Resilience

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 31

Resilience

Source: Collberg et al. (1997). A taxonomy of obfuscating transformations. University of Auckland

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 32

Potency and resilience in a nutshell

Potency

Resilience

confuses

confuses

humans

deobfuscator programs

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Computational overhead (runtime, memory consumption, etc.) of an
obfuscating transformation

• Measurement easy compared to potency and resilience

• However, meaningless without potency/resilience measurements

• What are acceptable costs?
◦ Highly depending on the concrete use case

19.11.21 Page 33

Cost

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 34

Cost

Source: Collberg et al. (1997). A taxonomy of obfuscating transformations. University of Auckland

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 35

Potency, resilience, and cost

Source: Collberg et al. (1997). A taxonomy of obfuscating transformations. University of Auckland

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 37

Two major research directions

Obfuscation based on
increasing code

complexity

Obfuscation based on
cryptographic primitives

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Formal definition by Barak et al [2001]

• An obfuscator O is a “compiler” which takes as input a program P and
produces a new program O(P) such that for every P:
◦ Functionality: O(P) computes the same function as P
◦ Polynomial Slowdown: The description length and running time of O(P)

are at most polynomially larger than that of P.
◦ “Virtual black box” property: “Anything that can be efficiently computed

from O(P) can be efficiently computed given oracle access to P“

19.11.21 Page 38

Definition

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Gaind tremendous attention
since 2014
◦ Papers until 2013: 12
◦ Papers 2014-2021: 117

19.11.21 Page 39

Virtual black box

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• „One cryptographic primitive to rule them all” (Barak, Harvard University)
◦ First proposed by Barak et al [2001]
◦ First candidate indistinguishability obfuscation from assumptions over

multilinear maps in 2013
◦ Since then, many more concepts were published

• C1 und C2 are two different circuits that both compute the same functionality
◦ Obf(C1) and Obf(C2) are indistinguishable
◦ Meaning: If there is more than one way of implementing a particular

functionality, the obfuscated version doesn't reveal anything about the
chosen implementation of the functionality

19.11.21 Page 40

Indistinguishability obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Basic idea of Turing‘s halting problem
◦ Boolean method HALTS
◦ HALTS performs arbitrarily complex analysis of a program to find out if

the program halts or runs forever
◦ HALTS itself must be a method that halts

• Turing showed that computing whether a program halts is impossible for
some programs with a counterexample
◦ From this negative result, the equivalence problem can be derived

- We have two programs: one always halts, the other one is Turing’s
counterexample – are these programs equivalent?

19.11.21 Page 41

Equivalence problem

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 42

Provably secure obfuscation?

secret key
k

secret key
k1

secret key
k2

secret key
k3

???

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 43

Virtual black-box property in real-life use cases

boolean isValidPassword(String password){
if (password.equals(‘mySecretPassword’))

return true;
else

return false;
}

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

19.11.21 Page 44

Virtual black-box property in real-life use cases

boolean isValidPassword(String password){
if (sha512(password).equals(‘d32b568cd1[…]08eab’))

return true;
else

return false;
}

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Return 1 for one specific input

• Return 0 for all other inputs

• Can be used for obfuscation
◦ Hierarchical access control
◦ Regular expressions
◦ Database relations

• Always based on challenge/response

19.11.21 Page 45

Point functions

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Seemed to be impossible a few years ago

• Still, research is not even close to something useful in practice

• Often compared to progress in homomorphic encryption
◦ Allows performing computations on encrypted data without decrypting it
◦ Also seemed impossible, but real-world use-cases do exist now

• Interesting read from 2020
◦ https://www.quantamagazine.org/computer-scientists-achieve-crown-

jewel-of-cryptography-20201110/

19.11.21 Page 46

Future of indistinguishability obfuscation

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

• Obfuscations based on increasing the complexity of the code are heavily
used for more than 3 decades both to protect benign software an well as
malware

• Measuring the strength of on obfuscation is challenging as it depends on
multiple factors including an attacker‘s skills

• Indistinguishability obfuscation is based on cryptographic primitives and
might revolutionize software protections in the future
◦ Gained a lot of attraction after a break-through paper in 2013 presenting

a first candidate indistinguishability obfuscation
◦ Today, however, no practical concept exists

19.11.21 Page 47

Conclusions

Software Protections | ICSSA 2021 | Dr. Sebastian Schrittwieser

Thank you for your attention!

