

Competence Centers for Excellent Technologies

Fingerprinting Relational Data

Agenda

- Background on fingerprinting relational data sets
 - Motivation
 - Requirements & workflow
- Current research directions
 - Fingerprinting categorical data
 - Evaluating fingerprinting schemes
- Challenges and future research

Fingerprinting Relational Data

Background

Fingerprinting - motivation

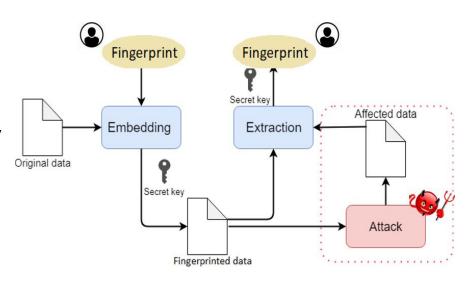
- Why protecting the <u>shared data</u>?
 - Data owner used a lot of resources to collect/create the data (money, human experts, time...)
 - Sensitive data (e.g. medical data)
 - Privacy implications: only the trusted parties get the data and should not share it further
- Anonymising data? Reduces utility!
- ✓ Controlled data sharing → the goal
 - Share full data
 - Trace the unauthorised data re-distribution

Data owner
Controlled data sharing
Data
Controlled data sharing
Data
Data
Data
Data

Trusted data recipient:

Controlled data sharing via fingerprinting

 Embedding owner's signature and recipient's identification into the data


Age	Blood Pressure	Diabetes
32	64	1
31	66	0
50	72	1
48	70	0

Age	Blood Pressure	Diabetes
33	64	1
31	68	0
50	72	1
47	70	0

Fingerprinting: requirements & workflow

Requirements:

- 1. Recognisable by the owner
- Not detectable and consequently removable by the recipients
- Robust to the attacks
- Does not change the utility of the data too much

Current research directions

Fingerprinting categorical data &

Evaluation of fingerprinting schemes

Challenge: categorical data

Minor alterations in categorical data?

age	sex	employed	Alzheimers s	tage			
59	Male	No	late				
67	Male	No	late			wall);	
				age	sex	employed	Alzheimers stage
				59	Male	Yes	late

• kNN-based fingerprinting: "modify the value to something that is likely to occur in the original dataseet" [1]

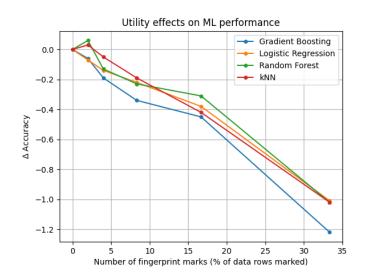
[1] Šarčević, Tanja, and Rudolf Mayer. "A Correlation-Preserving Fingerprinting Technique for Categorical Data in Relational Databases." *IFIP International Conference on ICT Systems Security and Privacy Protection.* Springer, Cham, 2020.

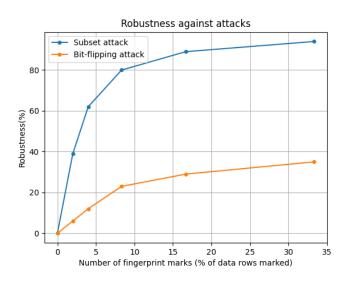
SBA Research, 2021 9

Female

No

late


Quality estimation


- Robustness against attacks
 - Attacker model: white-box naive attacker
 - Attacks: horizontal & vertical subset attack, flipping attack, ...
- Utility of fingerprinted data
 - Statistical properties (mean, var, distribution, ...)
 - ML performance (accuracy, ...) [2]

[2] Šarčević, Tanja, and Rudolf Mayer. "An evaluation on robustness and utility of fingerprinting schemes." *International Cross-Domain Conference for Machine Learning and Knowledge Extraction*. Springer, Cham, 2019.

Quality estimation

- Robustness against attacks → **maximise** modifications
- Preserve data utility → minimise modifications

Quality estimation

 <u>Data properties</u> affect the robustness and utility of fingerprinted data, e.g. data size, type of attributes, entropy, etc.

Table Experimental results of horizontal subset attack success (fm) on the Forest Cover Type dataset (left; size: 581012 x 54) and Adult (right; size: 48842 x 14), where p' denotes the strength of the attack

$\%_marks$	p' = 80%	p' = 95%	p' = 99%
17%	0	0	0.01
4%	0	0	1.0
2%	0	0.19	1.0
1%	0	0.99	1.0

p' = 80%	p' = 95%	p' = 99%
0.20	0.95	1.0
0.99	1.0	1.0
1.0	1.0	1.0
1.0	1.0	1.0

^[2] Šarčević, Tanja, and Rudolf Mayer. "An evaluation on robustness and utility of fingerprinting schemes." *International Cross-Domain Conference for Machine Learning and Knowledge Extraction*. Springer, Cham, 2019.

Summary & Future Challenges

Summary

- Fingerprinting wider range of attribute types categorical data
- Effects of fingerprinting parameters on robustness and data utility
- Novel utility measurement effects on a machine learning task

Future challenges

- 1. Designing tools for fingerprinting relational data in practice
 - Unifying fingerprinting scheme for relational data sets
 - Open-source implementation
 - OSSDIP controlled data visiting infrastructure for sensitive data
- 2. Aiding the fingerprint parameter choice for the data holder
 - Bigger-scale analysis to capture pattern and trends in robustness and data utility depending on fingerprinting parameters
 - Analysis of effects of data properties on the quality of fingerprint
 - Parameter choice guidelines tailored for a data set and its intended usage scenario; (semi-)automated process

Competence Centers for Excellent Technologies

Tanja Šarčević

SBA Research

Floragasse 7, 1040 Vienna

tsarcevic@sba-research.org

[1] Šarčević, Tanja, and Rudolf Mayer. "A Correlation-Preserving Fingerprinting Technique for Categorical Data in Relational Databases." *IFIP International Conference on ICT Systems Security and Privacy Protection*. Springer, Cham, 2020.

[2] Šarčević, Tanja, and Rudolf Mayer. "An evaluation on robustness and utility of fingerprinting schemes "International Cross-Domain Conference for Machine Learning and Knowledge Extraction. Springer, 2019.

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Bundesministerium Digitalisierung und Wirtschaftsstandort

