SBA Research

Competence Centers for Excellent Technologies

Ownership protection of Data and Machine Learning Models

Watermarking & Fingerprinting

Dipl.-Ing. Tanja Šarčević, MSc

SAINT, St.Pölten, April 1st 2022

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie **Bundesministerium** Digitalisierung und Wirtschaftsstandort

agentu wier

Agenda

- Motivation
 - Data/ML model sharing
 - Threats
- Ownership protection of data
 - Techniques
 - Trade-off between robustness and utility
- Ownership protection of Machine Learning models
 - Access scenarios
 - Black-box techniques
 - Protecting against model extraction attack
- Watermarking vs. Fingerprinting

Motivation: data and model sharing

- Data is valuable in terms of the amount of resources necessary to collect/create the data (money, human experts, time...)
- Training ML models require a lot of computing power, good quality training data, ...
- Data sharing:
 - Lack of own resources to analyse the data
 - Computational power, expertise, ...
 - E.g. outsourcing medical data to researchers
- ML model sharing:
 - Research purposes
 - Machine-Learning-as-a-Service (MLaaS)
 - Sometimes fee per prediction

Motivation: threats and controlled sharing

- Threats of sharing the <u>data</u>:
 - Data theft / unauthorised usage
 - Privacy implications for sensitive data (e.g. medical data): only the trusted parties get the data and should not share it further
- Threats for shared <u>ML models</u>:
 - Unauthorised usage
 - **Model Extraction Attack** recreating the model from predictions
- \checkmark Controlled sharing \rightarrow the goal
 - Share full data / share the model
 - Trace the unauthorised data re-distribution

Protecting the Ownership of Data

Controlled data sharing Watermarking & Fingerprinting

VS.

• Embedding owner's signature into the data

Imperceptible

							<i>(6</i>)
4	Age	Blood Pressure	Diabetes	Age	Blood Pressure	Diabetes	
	32	64	1	33	64	1	
3	31	66	0	31	68	0	
5	50	72	1	50	72	1	
2	48	70	0	47	70	0	

Li Y, Swarup V, Jajodia S. Fingerprinting relational databases: Schemes and specialties. IEEE Transactions on Dependable and Secure Computing. 2005 Apr 11;2(1):34-45.

Li Y, Swarup V, Jajodia S. Fingerprinting relational databases: Schemes and specialties. IEEE Transactions on Dependable and Secure Computing. 2005 Apr 11;2(1):34-45.

Age	Blood Pressure	Diabetes	
30	64	1	
31	66	1	
50	72	1	
48	71	0	
31	65	0	
75	77	1	
67	68	0	
52	68	0	
60	81	1	
51	77	1	
38	84	0	
44	75	0	
51	69	1	
72	70	0	
65	68	0	
81	80	0	

Trade-off: Robustness vs. data utility

Li Y, Swarup V, Jajodia S. Fingerprinting relational databases: Schemes and specialties. IEEE Transactions on Dependable and Secure Computing. 2005 Apr 11;2(1):34-45.

a) Original correlations

b) Correlations in fingerprinted datasets

Fig: Effects of the fingerprint on statistical properties (Adult data)

		NB	SVM	KNN	RF	LR
Adult	Original	79.7%	81.0%	81.5%	82.2%	82.3%
	$\gamma = 1$	79.7%	79.9%	80.6%	80.4%	82.0%
	$\gamma = 2$	80.3%	80.3%	81.6%	80.3%	82.1%

Fig: Effects of the fingerprint on the Machine Learning task

Sarcevic, Tanja, and Rudolf Mayer. "A Correlation-Preserving Fingerprinting Technique for Categorical Data in Relational Databases." *IFIP International Conference on ICT Systems Security and Privacy Protection.* Springer, Cham, 2020. https://github.com/tanjascats/fingerprinting-toolbox, version 0.1.0, accessed 2022-03-25 SBA Research, 2022

Protecting the Ownership of ML models

Protecting ownership of ML models

Black-box techniques

Backdooring the model with **trigger images** (watermarks)

J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy, "Protecting Intellectual Property of Deep Neural Networks with Watermarking," in Asia Conference on Computer and Communications Security, ASIACCS '18, pp. 159–172, ACM Press, June 2018.

Black-box techniques

 Backdooring the model with trigger images (watermarks)

Out-Of-Distribution[1]

"Cat"

In-Distribution^[2]

"Cat"

"Airplane"

Noise-based

 $\boldsymbol{\lambda}$

"9"

[1] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, "Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring," in USENIX Security Symposium, pp. 1615–1631, USENIX Association, Aug. 2018.

[2] R. Namba and J. Sakuma, "Robust Watermarking of Neural Network with Exponential Weighting," in Asia Conference on Computer and Communications Security, Asia CCS '19, pp. 228–240, ACM, July 2019.

[3] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy, "Protecting Intellectual Property of Deep Neural Networks with Watermarking," in Asia Conference on Computer and Communications Security, ASIACCS '18, pp. 159–172, ACM Press, June 2018.

[4] E. L. Merrer, P. Perez, and G. Tr´edan, "Adversarial Frontier Stitching for Remote Neural Network Watermarking," Neural Computing and Applications, vol. 32, pp. 9233–9244, Aug. 2019.

SBA Research, 2022

Perturbation-based[4]

Black-box techniques

Backdooring the model with **trigger images** (watermarks)

Black-box techniques: MEA resilient

- Watermark resilient against Model Extraction:
 - dinamically return wrong predictions for a fraction of queries and store them as triggers

API service

S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, "DAWN: Dynamic Adversarial Watermarking of Neural Networks," June 2020. arXiv: 1906.00830.

Watermark vs. Fingerprint

Watermark vs. fingerprint

Watermark: owner ID

Fingerprint: owner ID + recipient ID

SBA Research, 2022

Summary & Future Challenges

- Ownership protection techniques: watermarking & fingerprinting
- Data:
 - <u>Challenge</u> robustness vs data utility trade-off
- ML models:
 - White-box vs Black-box access
- ML model fingerprinting
- Protection of non-image-processing models
- Combining protection against multiple threats

Competence Centers for Excellent Technologies

Tanja Šarčević

SBA Research

Machine Learning & Data Management Group (MLDM)

Floragasse 7, 1040 Vienna

tsarcevic@sba-research.org

