

IfS

Object Capabilities and Their Benefits for Web Application Security

Michael Koppmann Software Engineering & Internet Computing **TU Wien Informatics**

Institute of Information Systems Engineering Information and Software Engineering Group Supervisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar R. Weippl Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik BSc

Problem and Motivation

• Exploiting security vulnerabilities for criminal activities has become a business which costs companies worldwide multiple billion U.S.

Research Questions

• Can vulnerabilities in authorization systems be prevented by design? • Is a capability-based system at least as secure as an ACL one?

- dollars a year
- The OWASP "Top Ten" document lists the ten most common web vulnerabilities
- Wrong authorization models seem like one of the root causes
- Most applications use authorization based on Access Control Lists

User	/etc/passwd	/home/alice/secret.txt	/home/bob/shared.txt	
Alice	(read)	(read, write)	(read)	
Bob	(read)	()	(read, write)	
Carol	(read)	()	()	

 Table 1: Access Control Matrix example

Methodology

- Design and implementation of a prototype web application based on capability-based techniques

• Can the web be used as a platform for exchanging secure tokens? • How compatible is it with the rest of the ACL-based ecosystem?

Eselsohr – A Case Study

• Shareable access to pages with limited permissions, without requiring user accounts, with URLs as access tokens:

- 2. Execution of a security analysis by conducting a penetration test on the prototype, based on the OWASP Top 10
- 3. Evaluation of the object capability model by comparing conceptual differences between OCAP and ACL
- 4. Evaluation of the security model by comparing differences between the prototype and existing web applications

Delete articles	

https://eselsohr.example.org/articles/shared-links? acc=QMANQJKQLGW2T56NXBBHXIM5UPI5VL3GLDMCKUHTXBKKIE57I47KK7

Evaluation

Comparison

Vulnerability class	Protection level		
	Pure OCAP s	Tstem	
A1:2017-Injection	D	\bigcirc	
A2:2017-Broken Authentication	\mathbf{O}	\bullet	
A3:2017-Sensitive Data Exposure	\mathbf{O}	\bullet	
A4:2017-XML External Entities (XXE)	-	\bullet	
A5:2017-Broken Access Control	\bullet	\bullet	
A6:2017-Security Misconfiguration	\bigcirc	\bigcirc	
A7:2017-Cross-Site Scripting (XSS)	\bullet	\bullet	
A8:2017-Insecure Deserialization	igodot	\bullet	
A9:2017-Using Components with Known Vulnerabilities	igodot	\bullet	
A10:2017-Insufficient Logging & Monitoring	\bigcirc	\bigcirc	

- Common ACL systems rely on Ambient Authority. This leads to **Confused Deputy** attacks which object capabilities are not susceptible to
- It is simpler to apply the Principle of Least Authority with OCAP
- Capability-based web applications mitigate common vulnerabilities
- Current browsers can either transmit data in secret but not shareable or shareable but not secret

 \bullet =prevention \bullet =mitigation; \bigcirc =no effect; -=not analyzed;

 Table 2: Security analysis results

 \bullet =completely exposed; \bullet =partly exposed; \bigcirc =not exposed; -=not applicable

Table 3: Comparison of how different data transfer methods expose web-keys

Conclusion

- Programming with an object capability-based style can prevent certain vulnerability classes
- OCAP-based applications have no significant drawbacks compared to ACL-based applications while providing improvements in areas like shareability and embeddability
- Current browsers can be used for exchanging capabilities, but further extensions would improve their security (e.g. new URI schemes) • An object capability application can be built with common web technologies without the need for special libraries