



# Opportunistic Algorithmic Double Spending How I learned to stop worrying and love the Fork

Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, and Edgar Weippl















# What is Double Spending?

### **Double-Spending Attack**:

In a double-spending attack, an adversary attempts to <u>deceive</u> <u>a victim into performing an economic transaction</u> directed at the adversary <u>on the basis of a presumed valid system state</u>, which is <u>later revealed to be stale or invalid</u>. Hereby, the adversary's goal is to be able to reuse any of the resources that form the basis of the economic transaction for other purposes.

# **State Instability in Nakamoto-Style Ledgers**



• No consensus finality – in principle any ledger state can change

# **Equivocation-Based Double-Spending**



• In Bitcoin's statless UTXO model equivocation is necessary\*

# (Opportunistic) Algorithmic Double-Spending (OpAl)

- Stateful smart contract platforms can offer transaction semantics that <u>dynamically depend on ledger state or</u> <u>context</u> i.e., transactions can have different outcomes
- Basic idea: use state-information to determine if transaction is executing in a fork (fork oracle) and trigger attack:

"IF this transaction is included in a blockchain that contains a block with hash 0xa79d THEN pay the merchant, ELSE don't pay the merchant."

# (Opportunistic) Algorithmic Double-Spending (OpAl)



# Algorithmic and Equivocation Double-Spending can have the same logical outcome



# **Implications of Algorithmic Double Spending?**

- Replaying transactions in forks risks triggering hidden attacks
- The attacker does not need to know about the fork
- Monitoring strategies looking for equivocations do not work
- Unintentional double-spending due to state-dependence
- <u>Replaying the same set of transactions in a fork may not yield</u> <u>the same result, even if the initial state is the same</u>

# What is Semantic Malleability?

### **semantic malleability** (informal):

Given a transaction  $\underline{t}$ , it may have different semantic outcomes, depending on the ledger state and environment upon which  $\underline{t}$  is executed.

 Transaction outcome can be influenced, e.g., through transaction ordering (consensus), frontrunning (MEV, sandwich attacks), acting on stale information, etc.

# **Robustness against Semantic Malleability**

Necessary properties for a ledger that is robust against semantic malleability:

#### Replay equivalence:

A transaction t satisfies replay equivalence, if executing t in all candidate states where t is executable (valid) leads to the same changes in the respective (sub)states

#### **Eventual replay validity**:

If a transaction t is found executable (valid) in some state  $\sigma$ , then it either remains executable (valid) or has already been executed in predecessor states of  $\sigma$ 

\*Assuming that no transaction equivocation happens<sup>10</sup>

# **Algorithmic Double-Spending through invalidation**



• A (valid) transaction is semantically malleable if it can be (permanently) invalidated

# **Analysis of Different Ledger Designs**

- Bitcoin
  - Its stateless UTXO model is mostly robust
  - Coinbase transactions violate replay validity
- Cardano
  - Extended UTXO Model (stateful, only one valid state transition)
  - Limited access to ledger context
  - Validity of transactions can be limited (replay validity violated)
- **Ethereum** (and similar EVM-based designs)
  - We provide an (economically viable) Proof-of-Concept attack
  - EVM opcodes that allow access to leger context e.g., (BLOCKHASH)
  - Easy to violate replay equivalence

# **Additional Cost for PoC OpAl Attack in Ethereum**



|                  | FSTAN  | IP EBALA | NCE INID | RER    | KHAC   | H      | NBASE  | NICE   | TCUI   | TY TIMIT |
|------------------|--------|----------|----------|--------|--------|--------|--------|--------|--------|----------|
| Opcode (OP)      | TIME   | SELF     | CHAL     | NUMP   | BLOU   | BASE   | COIN   | BALA   | DIFE   | GASL     |
| TX containing OP | 199731 | 63594    | 8253     | 36859  | 3425   | 777    | 3882   | 4324   | 1251   | 906      |
| Pr() OP in TX    | 21.65% | 6.893%   | 0.895%   | 3.995% | 0.371% | 0.084% | 0.421% | 0.469% | 0.136% | 0.098%   |
| Blocks cont. OP  | 4886   | 4767     | 3071     | 4529   | 1830   | 641    | 1897   | 2265   | 812    | 545      |
| Pr() OP in Block | 97.72% | 95.34%   | 61.42%   | 90.58% | 36.6%  | 12.82% | 37.94% | 45.3%  | 16.24% | 10.9%    |

EVM Opcode occurrence within execution traces of 922 562 transactions from 5000 blocks sampled from block height 14 010 000 to 14 059 099

|                  |        |        | Also used in PoC OpAl Attac |   |        |        |    |        |        |        |        |         |
|------------------|--------|--------|-----------------------------|---|--------|--------|----|--------|--------|--------|--------|---------|
|                  | ESTAN  | PEBALA | INCE                        |   | RER    | CKHAC  | H  | TE EEE | WBASE  | MCE    | FICUL  | TY TIMT |
| Opcode (OP)      | TIML   | SELL   | CHAL                        |   | MUMP   | BLOU   | B  | ASL    | COIN   | BALA   | DIFL   | GASL    |
| TX containing OP | 199731 | 63594  | 8253                        |   | 36859  | 3425   | 7  | 7      | 3882   | 4324   | 1251   | 906     |
| Pr() OP in TX    | 21.65% | 6.893% | 0.895%                      | 5 | 3.995% | 0.371% | 0. | 084%   | 0.421% | 0.469% | 0.136% | 0.098%  |
| Blocks cont. OP  | 4886   | 4767   | 3071                        |   | 4529   | 1830   | 64 | .1     | 1897   | 2265   | 812    | 545     |
| Pr() OP in Block | 97.72% | 95.34% | 61.42%                      | ć | 90.58% | 36.6%  | 1: | 1.82%  | 37.94% | 45.3%  | 16.24% | 10.9%   |
|                  |        |        | •                           |   |        |        |    |        |        |        |        |         |

Sample contains 3338 transactions with an OpAI-like opcode signature (BLOCKHASH + NUMBER) within 1823 ( $\approx$  36%) of blocks

| Contract Address                           | TX int. | Purpose                                    | Name                      | Source | Opcode Purpose       |
|--------------------------------------------|---------|--------------------------------------------|---------------------------|--------|----------------------|
| 0xc5F85281d4402850ff436b959a925a0e811D78d3 | 557     | $\operatorname{Game}/\operatorname{Token}$ | CnMGame                   | yes    | randomness?          |
| 0x00000000035B5e5ad9019092C665357240f594e  | 411     | MEV Bot?                                   | ?                         | no     | context sensitivity? |
| 0xEef86c2E49E11345F1a693675dF9a38f7d880C8F | 313     | MEV Bot?                                   | ?                         | no     | context sensitivity? |
| 0x5E4e65926BA27467555EB562121fac00D24E9dD2 | 264     | Layer 2 rollup                             | optimism.io               | yes    | caching/processing   |
| 0x56a76bcC92361f6DF8D75476feD8843EdC70e1C9 | 227     | Layer 2 rollup                             | metis.io                  | yes    | caching/processing   |
| 0xB6eD7644C69416d67B522e20bC294A9a9B405B31 | 222     | Token                                      | $0 { m xbitcoin.org}$     | yes    | context sensitivity  |
| 0xd6e382aa7A09fc4A09C2fb99Cfce6A429985E65d | 221     | Game/Token                                 | Doomsday NFT<br>(BUNKER)  | yes    | randomness           |
| 0x75E9Abc7E69fc46177d2F3538C0B92d89054eC91 | 130     | Token/NFT                                  | EnterDAO<br>Sharded Minds | yes    | randomness           |
| 0x563bDabAa8846ec445b25Bfbed88d160890a02Ed | 115     | MEV Bot?                                   | ?                         | no     | context sensitivity? |
| 0xa10FcA31A2Cb432C9Ac976779DC947CfDb003EF0 | 111     | MEV Bot?                                   | ?                         | no     | context sensitivity? |

Contracts with the highest number of transaction interactions that contain characteristic OpAl-like opcode usage. (?) denotes uncertain categorizations.

| Contract Address                           | TX int. | Purpose        | Name                      | Source | Opcode Purpose       |
|--------------------------------------------|---------|----------------|---------------------------|--------|----------------------|
| 0xc5F85281d4402850ff436b959a925a0e811D78d3 | 557     | Game/Token     | CnMGame                   | yes    | randomness?          |
| 0x00000000035B5e5ad9019092C665357240f594e  | 411     | MEV Bot?       | ?                         | no     | context sensitivity? |
| 0xEef86c2E49E11345F1a693675dF9a38f7d880C8F | 313     | MEV Bot?       | ?                         | no     | context sensitivity? |
| 0x5E4e65926BA27467555EB562121fac00D24E9dD2 | 264     | Layer 2 rollup | optimism.io               | yes    | caching/processing   |
| 0x56a76bcC92361f6DF8D75476feD8843EdC70e1C9 | 227     | Layer 2 rollup | metis.io                  | yes    | caching/processing   |
| 0xB6eD7644C69416d67B522e20bC294A9a9B405B31 | 222     | Token          | 0xbitcoin.org             | yes    | context sensitivity  |
| 0xd6e382aa7A09fc4A09C2fb99Cfce6A429985E65d | 221     | Game/Token     | Doomsday NFT<br>(BUNKER)  | yes    | randomness           |
| 0x75E9Abc7E69fc46177d2F3538C0B92d89054eC91 | 130     | Token/NFT      | EnterDAO<br>Sharded Minds | yes    | randomness           |
| 0x563bDabAa8846ec445b25Bfbed88d160890a02Ed | 115     | MEV Bot?       | ?                         | no     | context sensitivity? |
| 0xa10FcA31A2Cb432C9Ac976779DC947CfDb003EF0 | 111     | MEV Bot?       | ?                         | no     | context sensitivity? |

Contracts with the highest number of transaction interactions that contain characteristic OpAl-like opcode usage. (?) denotes uncertain categorizations.

# **Mitigation Strategies and Future Research**

- Improve finality or encourage interaction with finalized state
  - What are sensible values for k in forkable ledgers?
  - Difficult to upgrade existing designs
- Prevent conditional execution based on ledger context
  - Stateful smart contract designs likely still vulnerable to OpAl
- Transaction Analysis and Monitoring Techniques
  - Static and dynamic code analysis
  - Need to look back up to k blocks
- Let's Go Shopping Defense
  - Questionable ethics
- What is the systemic risk of forks in semantically malleable ledgers?





### **Thank You!**

### Nicholas A. Stifter

nstifter@sba-research.org / nicholas.stifter@univie.ac.at **PGP FP** 10C6 4FD1 19B1 B399 4A2B 6D7B 5EB9 556A 4339 97A9



















### **Thank You!**

### Nicholas A. Stifter

nstifter@sba-research.org / nicholas.stifter@univie.ac.at **PGP FP** 10C6 4FD1 19B1 B399 4A2B 6D7B 5EB9 556A 4339 97A9



















### **Thank You!**

### Nicholas A. Stifter

nstifter@sba-research.org / nicholas.stifter@univie.ac.at **PGP FP** 10C6 4FD1 19B1 B399 4A2B 6D7B 5EB9 556A 4339 97A9















# **OpAl Attack based on Depth-1 Fork Oracle**



• Note: Since the Merge future block producers are known in advance in Ethereum.

# **Backup – Unintentional Double-Spending**



EVM Opcode occurrence within execution traces of 922 562 transactions from 5000 blocks sampled from block height 14 010 000 to 14 059 099

|                  | TAM     | TAMP RALANCE ALD TR |        |        | WHASH TEE PASE |        |        | NCE TOULTY |        | TY TWIT |
|------------------|---------|---------------------|--------|--------|----------------|--------|--------|------------|--------|---------|
| Opcode (OP)      | TIMES   | SELED               | CHAIN  | NUMBER | BLOCK          | BASEF  | COLNPT | BALANC     | DIFFL  | GASLLI  |
| TX containing OP | 199731  | 63594               | 8253   | 36859  | 3425           | 777    | 3882   | 4324       | 1251   | 906     |
| Pr() OP in TX    | 21.65%  | 6.893%              | 0.895% | 3.995% | 0.371%         | 0.084% | 0.421% | 0.469%     | 0.136% | 0.098%  |
| Blocks cont. OP  | 4886    | 4767                | 3071   | 4529   | 1830           | 641    | 1897   | 2265       | 812    | 545     |
| Pr() OP in Block | 97.72%  | 95.34%              | 61.42% | 90.58% | 36.6%          | 12.82% | 37.94% | 45.3%      | 16.24% | 10.9%   |
|                  | MP      |                     | NCE    |        |                | H      |        |            |        | TY T    |
|                  | MESTAL  | TEBAL               | TAINID | MBER   | CKHA.          | SEFEE  | TNBAS  | LANCE      | TEFICU | SLIMI   |
| Opcode (OP)      | TL      | SEL                 | Chr    | NON    | BLU            | BAL    | 001    | BAL        | Dr     | GAL     |
| TX containing OP | 283350  | 72021               | 49478  | 37794  | 5211           | 3279   | 3229   | 6937       | 8294   | 1125    |
| Pr() OP in TX    | 31.355% | 7.97%               | 5.475% | 4.182% | 0.577%         | 0.363% | 0.357% | 0.768%     | 0.918% | 0.124%  |
| Blocks cont. OP  | 4865    | 4784                | 4644   | 4556   | 2017           | 1819   | 1518   | 2965       | 1245   | 612     |
| Pr() OP in Block | 97.3%   | 95.68%              | 92.88% | 91 12% | 40 34%         | 36 38% | 30 36% | 59.3%      | 24 9%  | 12 24%  |

EVM Opcode occurrence within execution traces of 903 675 transactions from 5000 blocks sampled from block height 15 510 000 to 15 559 099 – approx 35% of TX contain at least 1 opcode

| Contract Address                           | Num. TXns | Purpose        | Name                                | Source Code | Opcode Purpose       |  |
|--------------------------------------------|-----------|----------------|-------------------------------------|-------------|----------------------|--|
| 0x02BeeD1404c69e62b76Af6DbdaE41Bd98bcA2Eab | 1748      | NFT/Token      | posers (pos)                        | yes         | randomness           |  |
| 0xdb7A53E6AE058E1Dcf4502341E2ADFA522E2B29F | 579       | ?              | ?                                   | no          | ?                    |  |
| 0x5E4e65926BA27467555EB562121fac00D24E9dD2 | 508       | Layer 2 rollup | optimism.io                         | yes         | caching/processing   |  |
| 0x7CCB4EC695A2116E56A9F7b8738F78a15CD53bB0 | 444       | NFT/Token      | Bright Blights<br>(BRBL)            | yes         | ?                    |  |
| 0x00000000035B5e5ad9019092C665357240f594e  | 196       | MEV Bot?       | ?                                   | no          | context sensitivity? |  |
| 0xB6eD7644C69416d67B522e20bC294A9a9B405B31 | 89        | Token          | 0xbitcoin.org                       | yes         | context sensitivity  |  |
| 0x5650CA3f0289C762F83DdE1894faA9b6d0d89798 | 79        | Token          | Block X Token<br>(BLKX)             | yes         | context sensitivity  |  |
| 0xe5a5520B798C5F67CA1b0657B932656DF02595Ad | 70        | NFT/Token      | PUNK APE<br>YACHT CLUB<br>(PUNKAYC) | yes         | randomness           |  |
| 0xd9506121D67fb918AC47AF0b883730694bE9377C | 51        | Token          | Kannabiz Koin<br>(KK)               | yes         | context sensitivity  |  |
| 0xd8c07491cAA1eDF960db3Ceff387426d53942ea0 | 47        | MEV Bot?       | ?                                   | no          | context sensitivity? |  |

Contracts with the highest number of transaction interactions that contain characteristic OpAl-like opcode usage (sample block height 15 510 000 to 15 559 0992)

```
pragma solidity 0.8.4;
 1
   // This contract acts as an OpAl forwarding proxy for transactions.
 2
    contract Opal {
3
      address public owner;
 4
 5
6
      modifier onlyOwner() {
 \overline{7}
        require(isOwner(msg.sender));
8
        _;
9
      3
10
      constructor() {
11
        owner = msg.sender;
12
      3
13
14
      fallback() external payable {}
15
      receive() external payable {}
16
17
      function isOwner(address addr) public view returns(bool) {
18
        return addr == owner;
19
      3
20
21
      function cashOut(address payable _to) public onlyOwner {
22
        _to.transfer(address(this).balance);
23
      7
24
25
      // forwarding function implementing opportunistic double-spending (OpAl)
26
      function forward(address payable destination, bytes32 commitblockHash,
27
                        uint commitblockNumber, bytes memory data)
28
                        onlyOwner public payable returns(bool success) {
29
        if (blockhash(commitblockNumber) == commitblockHash)
30
          assembly { success := call(gas(), destination, callvalue(),
31
                                   add(data, 0x20), mload(data), 0, 0)
32
          }
33
      }
34
```