Reverse Engineering for Input Modeling
Input Parameter Model Inference from Network Traces

Manuel Leithner | MATRIS Group, SBA Research | FH St. Pölten

Combinatorial Testing

Testing is an essential task in any secure software development lifecycle.

- **Combinatorial Testing** combines
 - mathematical coverage guarantees
 - small test sets
 - flexible extensions (constraints, budgeting, ...)

Typical Workflow

1. Input modeling: Generate model of parameters & values
2. Test generation: Construct combinatorial test set (Covering Array [CA])
3. Test translation: Transform abstract test cases to concrete messages
4. Test execution: Submit messages to target, record response
5. Test oracle: Decide whether test was handled correctly

Combinatorial testing requires a model (IPM) of input parameters, their values, and potentially existing constraints.

- Additional effort to create and maintain
- Often not available in practice
- Must reverse engineer to test proprietary protocols

Thesis Contribution

- First work to combine protocol reverse engineering based on network traces with input parameter modeling
- Translates generated test cases to concrete protocol messages
- Open Source implementation based on Netzob
- Identifies avenues for future work, e.g. shortcomings of model definitions

Message Format

Netzob protocol message format ("Symbol"): Tree made up of fields, each containing

- Node variables, encapsulating other nodes (Repetition, choice, concatenation)
- Node variables, defining boundaries of child nodes
- Leaf variables, containing concrete data

Primitive data types

Integers, strings, IPs, ...

Modeled using boundary values

1. Partition domain of parameter based on semantics
2. Identify values at boundaries of partitions, e.g. min, $-1, 0, 1, \text{max}$
3. Mark negative (invalid) values, e.g. larger than allowed

Node variables

Repetition, choice, concatenation

Modeled using metaparameters

- Number of repetitions
- Which alternative to select for a node

State of research: Coverage definition lacking

- Split metaparameter test set from value test set, combine later
- Nested node variables result in huge model or incomplete coverage
- Additional research required to solve identified shortcomings

Summary

- Combinatorial testing is an efficient & effective black-box testing method
- Offers mathematically guaranteed coverage and small test set sizes
- Requires input parameter model, often not available in practice

- Approach: Reverse engineering to infer input parameter models
- Pluggable mechanism allows choice of test set generator
- Translates generated test sets to concrete protocol messages