
344 Int. J. Business Process Integration and Management, Vol. 5, No. 4, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

Model-driven rule composition for event-based
systems

Hannes Obweger*, Josef Schiefer, Martin Suntinger and
Peter Kepplinger
UC4 Senactive,
Prinz-Eugen-Straße 72/1/5,
1040 Vienna, Austria
E-mail: hannes.obweger@uc4.com
E-mail: josef.schiefer@uc4.com
E-mail: martin.suntinger@uc4.com
E-mail: peter.kepplinger@uc4.com
*Corresponding author

Abstract: This article presents a novel framework for creating sense-and-respond rules, which
allow detecting noteworthy event situations from streams of business incidents and responding to
them in near real-time. Focusing on expressiveness as well as manageability, the proposed
framework uses a model-driven approach for the rule definition, where the different aspects of a
rule are specified in clearly separated, comprehensible sub-models. This includes models for
event-type and correlation information, virtual business-object representations, event patterns
(‘sense’) and actions (‘respond’), as well as event processing networks. Event patterns are
modelled in a visual decision graph from easy-to-understand pieces of pattern-detection logic,
and/or from sub-level event patterns. The proposed system has been fully implemented with a
service-oriented architecture. The rule model is illustrated with a business case from the
workload-automation domain.

Keywords: rule composition; rule management; complex event processing; CEP.

Reference to this paper should be made as follows: Obweger, H., Schiefer, J., Suntinger, M. and
Kepplinger, P. (2011) ‘Model-driven rule composition for event-based systems’, Int. J. Business
Process Integration and Management, Vol. 5, No. 4, pp.344–357.

Biographical notes: Hannes Obweger received his Masters in Computer Science from the
Vienna University of Technology and is presently pursuing his PhD, ibid. His work focuses
on rule management for complex event processing systems. He is with UC4 Senactive,
a Vienna-based company offering software for real-time sense-and-respond solutions.

Josef Schiefer received his PhD in Information Systems from the University of Vienna. He was a
Researcher at IBM’s Thomas J. Watson Research Center and one of the founders of Senactive
Inc. Today, he is the Vice President for Development at UC4 Senactive.

Martin Suntinger received his Masters in Computer Science from the Vienna University of
Technology and is currently working towards an MBA at the WU Executive Academy of the
Vienna University of Economics and Business. His research interests include complex event
processing and business intelligence, as well as innovation and new products management. He is
with UC4 Senactive.

Peter Kepplinger is completing his Masters in Mathematics at the University of Vienna and
especially interested in mathematical modelling and computational methods in population
genetics. He is with UC4 Senactive.

1 Introduction

Complex event processing (CEP) enables real-time
monitoring of business situations and automated
decision-making in order to respond to threats or seize
time-critical business opportunities. Applications thereof are
manifold, ranging from logistics to fraud detection and
automated trading; recently, the combination of CEP and
business process management has led to the discipline of

event-driven business process management, ED-BPM
(von Ammon et al., 2008). The underlying business model
is sense-and-respond (S&R) as proposed by Haeckel
(1999). It is rooted in the idea that purposeful adaptive
system design is more effective to deal with discontinuities
and fast-moving industry environments as compared to
traditional plan-and-execute strategies.

Event-based systems typically encompass a generic data
integration layer with a multitude of adapters in order to

 Model-driven rule composition for event-based systems 345

receive (sense) business events from various source systems
and respond back to these systems. Yet, the determinant of
value and effectiveness of a CEP system is the evaluation
process in between sensing and responding, namely the
decision-making. Event-based applications typically use
reactive event-pattern rules for modelling use-case specific
decision logic. Event-pattern rules – which Luckham (2005)
called ‘the foundation for applications of CEP’ – may be
considered as event-processing logic in the form ‘if situation
x occurs in the event stream, then generate response y’. In
the workload automation domain, for instance, an
exemplary rule could be defined as follows: “If the
frequency of error messages increases by a factor of two and
tasks are delayed by more than 5%, then allocate additional
resources for the execution environment”.

For building large enterprise solutions based on CEP,
mainly two requirements are key success factors:
expressiveness and manageability. Clearly, expressiveness
guarantees that a broad variety of use cases and scenarios
can be modelled with the framework. Practical experience
shows, however, that the development of event-based
applications is a highly challenging task that requires design
decisions at different levels of abstraction: Which
real-world actions and state-changes shall emerge into event
data? Which relationships exist between events? Which
kind of event situation shall trigger what kind of response?
Thus, equally important, manageability refers to ease of
creation, administration and modification of complex rule
sets.

In this article, we introduce the rule management of
the event-based system sense-and-respond infrastructure
(SARI) as originally proposed by Schiefer and Seufert
(2005). In SARI, business situations and exceptions are
modelled with S&R rules which have been designed to be
created and modified by business users. SARI offers a
user-friendly modelling interface for event-triggered rules
with a correlation model and a graph for representing
business situations as a combination of easy-to-understand
pieces of pattern-detection logic. High expressiveness and
usability is achieved by a rich set of predefined rule building
blocks and a tailored expression language for formulating
conditions and calculations. A clean separation of concerns,
splitting the overall definition of a SARI application into a
set of decoupled sub-models, facilitates manageability and
reuse of components.

The remainder of this article is organised as follows:
Section 2 discusses related work. In Section 3, we
provide an overview of the proposed application model
and the relationships between the various sub-models.
SARI’s event model, correlation model and business-entity
model are introduced in Section 4 to Section 6. Section 7
presents a detailed description of SARI’s rule model. The
implementation of the event-processing model is discussed
in Section 8. Section 9 shows SARI ‘in action’ with a
real-world use case from the workload automation domain.
Section 10 presents the results of an experimental
evaluation. Section 11 concludes this article and gives an
outlook to future work.

2 Related work

Related work can be divided into work on active event
processing, event algebras in the active database
community, work on event/action logics, updates, state
processing/transitions, and temporal reasoning in the
knowledge representation domain.

There has been a lot of research and development
concerning knowledge updates and active rules in the area
of active databases and several techniques based on
syntactic [e.g., triggering graphs or activation graphs
(Baralis and Widom, 1994)] and semantics analysis (e.g.,
Bailey et al., 1997) of rules have been proposed to ensure
termination of active rules (no cycles between rules) and
confluence of update programmes (always one unique
outcome). The combination of deductive and active rules
has also been investigated in different approaches mainly
based on the simulation of active rules by means of
deductive rules (Ludascher, 1998). However, in contrast to
our work, these approaches often assume a very simplified
operational model for active rules without complex events
and event/condition/action (ECA) related event processing.
ECA rules generally associate a triggering – possibly
composite – event with one or more conditions and a set of
actions. When the triggering event is detected and all
conditions evaluate to true, the action part is executed.

Several CEP and event stream processing (ESP) systems
have been developed, where many of them use an
SQL-based approach for querying event streams. An
example is Esper (http://esper.sourceforge.net), which is an
open source event-stream engine that allows analysis of
event streams with SQL-queries for defining correlations
between events and for detecting event patterns. Aurora
(Abadi et al., 2003), as well as its successors Borealis
(Abadi et al., 2005) and Medusa (Zdonik et al., 2002), are
also SQL-based processing engines, which provide
efficient scheduling service and quality-of-service delivery
mechanisms.

ruleCore (Seiriö and Berndtsson, 2005) is an
event-driven rule processing engine supporting ECA rules,
and providing a user interface for building composite events
and rules.

Wu et al. (1998) propose an event correlation approach
with rules in the ‘conclusion if condition’ form, which are
used to match incoming events via an inference engine.
Based on the results of each test and the combination of
events in the system, the rule engine analyses data until it
reaches a final state.

Chen et al. (2006) show an approach for rule-based
event correlation. In their approach, they correlate and adapt
complex/structural extensible markup language (XML)
events corresponding to an XML schema. They describe an
approach for translating hierarchical structured events into
an event model that uses name-value pairs for storing data.

ECA rules have also been proposed by several authors
for workflow execution (e.g., Barbará et al., 1994; Bussler
and Jablonski, 1994; Dayal et al., 1990; Geppert and
Tombros, 1998). In event-driven workflow execution,
events and event-condition-action rules are the fundamental

346 H. Obweger et al.

mechanisms for defining and enforcing workflow logic.
Processing entities enact workflows by reacting to and
generating new events. The foundation for events facilitates
the integration of processing entities into coherent systems.
Some of these systems (Barbará et al., 1994), use composite
events to detect complex workflow situations. EVE
(Geppert and Tombros, 1998) is a system using ECA rules
for workflow management addressing the problem of
distributed event-based workflow execution.

3 A model-driven approach to event-based
decision-making

In practice, manageability is as important for the success of
rule-based event processing as is expressiveness. In order to
provide manageability and usability also for large-scale
solutions, SARI splits the overall definition of an
event-based application into a collection of smaller,
decoupled sub-models. Each sub-model thereby describes a
certain aspect of an event application, beginning with the
structure of all possible event data and ending with the
orchestration of self-contained event-processing units such
as adaptors and event services. Figure 1 shows the various
sub-models of a SARI application along with the
relationships between them. Detailed discussions of these
models are presented in Section 4 to Section 8.

Figure 1 SARI application model (see online version
for colours)

3.1 Event model

The event model provides abstract descriptions of all kinds
of events that may occur within a SARI application, i.e.,
may emerge directly from the source system or be created
virtually during the event processing. These descriptions –
referred to as event types in the remainder of this article –
declare all relevant characteristics of both the incident itself
and the context in which it occurs. In the logistics domain,
for instance, an event model would typically define events
such as ‘order placed’, with properties such as the
corresponding user account and the kinds and quantities of
goods, ‘order shipped’, etc.

Event types form the foundation of any SARI
application and generally allow higher-level models to be

defined in a type-safe manner. The exact uses of event types
in the various sub-models are discussed below.

3.2 Correlation model

The correlation model defines in an abstract manner
whether two events relate to each other, i.e., whether they
belong to a coherent sequence of real-world business
incidents such as a business process. For instance, given an
event model with two event types ‘order placed’ and
‘shipment started’, a correlation relationship ‘order process’
may link pairs of ‘order placed’ and ‘shipment started’
events by their order IDs. At runtime, so-defined classes of
event situations are then used for partitioning the overall set
of events and handling these partitions separately within the
SARI application’s event-processing logic. It is essential to
note, however, that a correlation model does not define
restrictions on the exact characteristics of a concrete event
situation, such as specific event-attribute values or the
ordering or quantity of events. SARI instead allows for a
strict decoupling between the correlation aspect and the
pattern-modelling aspect, thereby simplifying the definition
of both halves and facilitating the reuse of correlation
information across a SARI application.

The correlation model directly builds upon the event
model for defining relationships in an abstract manner. By
itself, the correlation model serves as a basis for the
pattern-definition part of the rule model, where application
designers may define classes of ‘noteworthy’ event
situations by imposing additional constraints on sets of
correlated events.

3.3 Business object model

The business object model enables application developers to
define virtual representations of the various business objects
existing in the underlying business environment. These
entities may then be used to encapsulate certain kinds of
business states in a controlled, intuitive and computationally
efficient manner, and can be updated and queried from
higher-level event-processing logic. Slimming down
rule-definition logic by the handling of complex data over
time, the business-object model thereby simplifies the
definition and detection of noteworthy business situations.

Business objects are updated and queried through
event-pattern rules as defined in the rule model. Albeit
updates are always triggered by the occurrence of a
respective event pattern, the definition of business objects
themselves is generally independent from the event model,
the correlation mode and the rule model.

3.4 Rule model

The rule model may be considered the key part of
the proposed architecture and forms the basis for any kind
of rule-based event processing in SARI. In so-called S&R
rules, classes of noteworthy event situations – so-called
event patterns – are associated with appropriate reaction
logic, so-called actions. Whenever an incoming stream of

 Model-driven rule composition for event-based systems 347

events matches the event pattern, the associated actions are
triggered.

An event pattern may be considered an additional
constraint on either a class of single business incidents as
defined in the event model or on a class of business
situations as defined in the correlation model. For instance,
an event pattern ‘order delayed by x days’ would select from
the overall set of all ‘order processes’ only those cases that
are delayed by x days or longer. Actions allow generating
response events as defined in the event model or updating
virtual business object representations as defined in the
business object model. S&R rules are referenced in the event
processing model to be executed as part of a specific
processing path through a SARI application.

3.5 Event processing model

The orchestration of self-contained event-processing agents,
as well as their integration with underlying source systems,
is finally described in an application’s event processing
model. In so-called event-processing maps, the model
describes:

a how real-world business occurrences are translated to
events of respective event types

b how said events are processed in an orchestration of
event services

c how response events trigger concrete actions in the
underlying business environment.

S&R rules as defined in the underlying rule model are
mapped to rule services, special event-processing units that
evaluate sets of rules on the incoming stream of events and
publish possible response events.

4 Event model

Forming the bottom layer of the proposed architecture, the
event model provides abstract descriptions of all kinds of
events that may emerge from the source system or be
created virtually during the event processing.

SARI builds upon a strongly-typed event model that is
oriented towards the type systems of modern object-oriented
programming languages. Figure 2 sketches the meta-model
for a SARI application’s event-type library. An event type
T = {a1, a2, …, an | ai = (ii, ti)} is defined by a set of event
attributes, each having an identifier i and an event-attribute
type. SARI supports three kinds of event-attribute types:1

• Single-value types include primitive types (such as
integers, strings, etc.) as well as event types (i.e., an
event may hold auxiliary events as event attributes).

• Collection types are lists of attribute-typed elements.

• Dictionary types eventually associate attribute-typed
values with primitive-typed keys.

An event type T′ may furthermore be in a subtype
relationship with a base event type T; as usual, a

sub event-type inherits all event attributes from the base
type, i.e., T ⊆ T′. By definition, each event type must
originate from a root event type ‘base event’. ‘Base event’
defines a timestamp ‘creation time’ – holding an event’s
time of occurrence – as well as a unique identifier ‘ID’. For
further details on SARI’s event model, the interested reader
may refer to Rozsnyai et al. (2007). An exemplary event
type ‘order received’ is depicted in Figure 3.

Figure 2 Event type meta-model

Figure 3 Exemplary event type (see online version for colours)

5 Correlation model

Setting up on the event model, the correlation model defines
how instances of the various event types relate to each other
in coherent sequences of incidents such as business
processes. So-defined classes of event situations then allow
partitioning the overall set of events during the event
processing and the ex-post analysis of event data (Suntinger
et al., 2008), and also form the basis for the rule model as
described in Section 7.

SARI applications define correlation information in
so-called correlation sets (Schiefer et al., 2009), a
declarative model that allows incorporating and combining
diverse correlation approaches through correlation bands.
Each correlation set then corresponds to one class of event
situations. In the logistics domain, for instance, a correlation
set ‘shipment’ might correlate the events of all shipment
processes as emerging from the source system. A concrete
event-situation instance – e.g., the events of the specific
shipment process #42 – is referred to as correlation session.

Figure 4 sketches the meta-model for correlation sets. A
correlation set s = {b1, b2, …, bn} is defined by a non-empty
collection of correlation bands. Each correlation band
describes a specific correlation approach for events of one
or more event types as defined in the SARI application’s

348 H. Obweger et al.

event model, thereby defining a part of the overall event
situation. A first correlation band bi may, for instance,
describe the correlation approach for ‘order received’,
‘shipment ready’ and ‘order shipped’ events as being based
upon equal order IDs, while a second correlation band bi
may describe the correlation approach for ‘order shipped’
and ‘shipment received’ events as being based upon an
explicit reference from the ‘shipment received’ events to the
causally preceding ‘order shipped’ event (Figure 5).

Figure 4 Correlation set meta-model

Figure 5 Exemplary correlation set (see online version
for colours)

At the time of writing, SARI supports the following set of
correlation bands:

• Elementary correlation bands correlate events of
different types based upon equal event-attribute values.
Let = {T} be an event-type library. An elementary
correlation band e ⊆ {(T, a) | T ∈ , a ∈ T} is defined
by a non-empty set of event types together with an
event attribute per type. Given a correlation band
e = {(T1, a1), (T2, a2), …, (Tn, an)}, two events ei: Ti and
ej: Tj are then correlated (and thus part of the same
correlation session) if () ().

i je i e jvalue a value a= Note
that a correlation band’s event attributes do not
necessarily have the same identifier. Also, note that a
correlation set may comprise only one event type T, i.e.,
n = 1; then, it defines a subset of all T-events.

• Self-referencing correlation bands allow implementing
scenarios where events explicitly refer to their (causal)
predecessors. As with elementary correlation bands, a
self-referencing correlation band s ⊆ {(T, a) | T ∈ ,
a ∈ T} is defined by a non-empty set of event types,
and, for each event type, an event attributes. Two
events e and f, f of type Ti, are then correlated if

valuee(ID) = valuef(ai), where ‘ID’ signifies the
unique identifier attribute of an event.

• Knowledge-based correlation bands are similar to
elementary correlation bands; however, for evaluating
‘equality’ between event-attribute values, an (external)
knowledge base is queried. For instance, two string
values ‘Vienna’ and ‘Wien’ could be detected as
equivalent via an online dictionary. A knowledge-based
correlation band k = (e, b) therefore extends an
elementary correlation set e by a knowledge-based b,
offering methods for testing equality between
two event-attribute values.

• Correlation sets may finally be (re-)used as correlation
bands in higher-level correlation sets, which enables the
hierarchical modelling of event situations.

6 Business object model

CEP systems define steering logic on event-based
abstraction of real-world business environments. This
approach fits particularly well for monitoring streams of
self-contained business incidents; however, it tends to hit
the wall when the overall state of real-world business
objects needs to be derived from sequences of incremental
updates. Consider an example from the system-monitoring
domain, where a system administrator shall receive a
notification whenever the number of alarms on a server
exceeds a specified threshold. Here, a purely event-based
system would have to correlate all alarm events within a
sliding time window and perform a ‘count’ operation each
time an alarm occurs. It is easy to see that for long time
windows and/or high-frequent updates, this approach
inevitably leads to serious performance issues.

SARI therefore provides a separate business object
model, allowing application designers to encapsulate state in
a controlled and intuitive manner. The business object
model is implemented via so-called business object
providers, plug-in-like components that – generally
independent from other parts of the SARI architecture –
manage specific kinds of business objects as application-
wide, typed data-structures. Depending on their specific
semantics, business object providers define a public
interface for updating and querying the state of their data;
read and write operations are accessible via SARI’s rule
model.

Given a certain business scenario, application designers
will therefore:

a chose and incorporate appropriate business object
providers

b for each business object provider, define the exact
structure(s) of the required business object
representations in the form of business object types.

In any case, a business object type specifies a (possibly
composite) entity key; at runtime, entity keys then allow

 Model-driven rule composition for event-based systems 349

identifying a specific instance of the given business object
type.

SARI currently features two kinds of business objects:

1 Measures are the most basic kind of business object and
basically may be considered numeric values that are set
via a measure’s update operations. Possible updates
include basic operations such as increment/decrement,
but also complex functions such as a moving average
over a specified time window.

 A measure type M = (K, v, h) is defined by:
• A set of key properties K = {(i1, t1), (i2, t2), …, (in,

tn)}; each key attribute (i, t) is defined by an
identifier i and a data type t.

• An initial value .v∈
• A Boolean flag h ∈ {0, 1}, defining whether the

system shall maintain the complete update history
of a measure. The development of a measure over
time can play a crucial role for the ex-post analysis
of a system.

 Measures are typically used for counters. For
implementing the above use-case of testing the number
of server alarms against a defined threshold, an
application designer would define a measure type
‘alarms per server’ with a single, string-typed key
property ‘server’ and an initial value of zero. For each
incoming alarm event, a rule r1 would then increase the
appropriate measure by one. A second rule r2 would
supervise the measure and, when it exceeds the
threshold, notify the administrator.

2 Entities group sets of typed attributes and thus enable
virtual representations of multi-variate real-world
entities such as user accounts, suppliers, etc. Operations
allow for continuously updating an entity’s attributes,
thereby keeping it in sync with its real-world
correspondence. An entity type e = (K, E) is defined by:
• a set of key properties K
• a set of entity attributes E = {(i1, t1, v1), …, (in, tn,

vn)}; entity attributes define an identifier ii, a type ti
and an initial value vi: ti.

7 Rule model

The detection of relevant patterns in continuous streams of
business events is the key feature of CEP. Associating
classes of noteworthy event situations with appropriate
reaction logic, the rule model may therefore be considered
the core of the proposed architecture. Together with the
event-processing model, it defines the use-case specific
decision logic of an event-based application.

To facilitate the reuse of event-processing logic across
different business scenarios, SARI implements a strict
decoupling between pattern modelling – i.e., the definition
of noteworthy event situations – and action modelling, i.e.,
the definition of reaction logic. The respective sub-models,

the pattern model and the action model, are discussed
below. For the creation of full-fledged S&R rules from
pattern-detection and reaction logic, SARI finally provides a
two step workflow:

1 In a first step, IT experts and skilled business users
create a catalogue of pattern definitions and action
definitions. Pattern definitions describe classes of
noteworthy event situations. Through a human-readable
description of the described event situation and a set of
input parameters, they enable business users to
configure and apply the encapsulated pattern-detection
logic without having to understand the event-based
foundation of an application. Action definitions,
similarly, abstract from concrete reaction logic.

2 In a second step, business users may instantiate
concrete rule logic by assembling the required ‘building
blocks’ and setting appropriate
input-parameter values. A so-created S&R rule then
encapsulates business logic in the form ‘if situation
occurs, then execute action(s)’ and can be evaluated in
rule services as defined in the event processing model.

7.1 Pattern model

Powerful pattern-detection logic is key to successful
applications of CEP. However, especially for complex
business processes comprising a large number of business
incidents, describing classes of noteworthy event situations
in an abstract manner may place heavy demands on users.
SARI aims to simplify this process by employing a
‘divide-and-conquer’-like approach to modelling pattern
definitions, where application developers compose complex
pattern-detection logic from easy-to-understand pieces of
logic such as ‘the occurrence of an event of type T, with
certain attribute values’ or ‘the occurrence of a sub-pattern
P’. These pieces – encapsulated in so-called rule
components – are connected to each other in a directed,
acyclic decision graph. At runtime, the predecessors in
the graph are then considered as preconditions in the
event-processing logic. To activate a component c – and
thus bring it to play into the evaluation process – a concrete
event situation must conform to (at least) one valid path
through the decision graph. Depending on the evaluation
result of c, further parts of the decision graph are activated,
and so forth.

The described, graph-based structuring of pattern-
detection logic suggests a graphical approach to pattern
modelling, which may enable a comprehensive view of the
overall pattern-detection logic as well as quick and easy
access to single rule components. SARI provides a graphical
pattern editor, which allows users to add, configure and
connect graphical representations of rule components.
Exemplary shapes are presented in Figure 8.

7.1.1 Meta model

Figure 6 shows the meta-model for pattern definitions. A
pattern definition p = (C, P, I, c) is defined by a set of rule

350 H. Obweger et al.

components C, a set of precondition relationships P, a set of
input parameters I, as well as an optional correlation set c. A
concrete realisation of the presented meta model is
presented in Section 9.

Figure 6 Pattern definition model

Rule components

Encapsulating easy-to-understand pieces of pattern-
detection logic, rule components may be considered the key
element of any rule-based event processing in SARI.
Depending on its implementation, a rule component c ∈ C
has a collection of input ports IN and a collection of output
ports OUT; while input ports allow generally activating
a rule component, output ports represent possible results of
the encapsulated logic. Dependencies between components
are modelled as precondition relationships between output
ports and input ports. To allow multiple preconditions, a
binary precondition operator specifies whether all (AND),
at least one (OR) or exactly one (XOR) precondition must
be fulfilled in order to activate an input port.

According to its specific role within a pattern definition,
a rule component may furthermore define diverse
expressions on:

a all business objects as defined in the business-object
model

b correlation sessions as constituted by the pattern
definition’s correlation set c.

Whenever the rule component is triggered, these
expressions are evaluated on the current values of the
referred business objects and the events of the on-hand
correlation session, respectively; for instance, if an
evaluation is directly or indirectly caused by an incoming
event e, the given expression is evaluated on the correlation
session S e the event belongs to.2

Possible rule-component implementations are listed
in the bottom of Figure 6. Condition components, the
sub-pattern component and time-based components provide
a powerful toolkit for describing classes of noteworthy
event situations. For a detailed description of SARI’s

component library, the interested reader may refer to
Figure 8. Signals are special components that notify the
detection of an event situation to higher-level decision logic
and are described in greater detail in the following section.

Precondition relationships

A precondition relationship p = (in, out) associates an output
port out of a rule component ri ∈ C with an input port in of
another rule component rj ∈ C. Cyclic dependencies are
forbidden.

Input parameters

Input parameters of the form (i, t), where i is an identifier
and t is a data type, allow adapting pattern-detecting logic to
the concrete business scenario in which it is applied. When
creating a pattern definition, an input parameter may be
used as a typed placeholder across the various rule
components of the decision graph. When using a concrete
instance of the pattern definition – e.g., in a S&R rule –
these placeholders are replaced by concrete values.

Correlation set

The proposed, model-driven approach to rule composition
builds upon a strict decoupling of event correlation –
defining classes of event situations on a common level,
without further restrictions on the exact characteristics of a
concrete situation instance – and event-pattern modelling,
where for a given correlation set those characteristics of a
concrete situation instance are defined that makes it
noteworthy in a specific context. A pattern definition’s
correlation set consequently defines the class of event
situations upon which a decision graph shall be evaluated;
given a correlation set s, the decision graph is evaluated
separately for each correlation session of s. When omitting
the correlation configuration, a decision graph is evaluated
independently for each incoming event.

Figure 7 Event correlation and pattern detection in SARI
(see online version for colours)

 Model-driven rule composition for event-based systems 351

Figure 8 Rule components (see online version for colours)

Condition components • the measure type M
• a set of expressions K for each key attribute in M, identifying the

specific measure instance
• a Boolean expression b.

Condition components enable selective activations of
downstream parts of a decision graph depending on the
result of user-defined Boolean expressions on the underlying
event situation. On the input side, all of the following
components feature a single activator port: only if the
required preconditions are fulfilled by an incoming event
situation, the described pattern-detection logic is considered
in the pattern-detection process. On the output side, a set of
output ports represents the possible results of an evaluation.
 In all of the following descriptions, we assume that a
component is active, i.e., that its preconditions are fulfilled.
Event conditions c = (T, b) evaluate a Boolean expression b
whenever an event of a user-defined, ‘triggering’ event type
T occurs in the event stream. In most cases, the result of
an event condition depends on the most recent event of a
correlation session, which is the triggering event itself. A
so-defined event condition then describes the occurrence of a
certain kind of business incident, and may be considered the
core element of most decision graphs.
 If for an incoming event e of type T, b is fulfilled, the
condition’s ‘true’ port is activated; otherwise, the ‘false’ port
is activated. Figure (a) shows the graphical pattern-editor’s
rendering of an exemplary event condition ‘CPU-related
alarm’, describing the occurrence of an alarm event with an
error code of 17 or 39.
Event cases [Figure (b)] are similar to event conditions;
however, they allow users to group sets of Boolean
expressions in a single component. An event case (T, C) is
defined by:
• A triggering event type T.
• A collection of cases C. Each case is defined by an

identifier and a Boolean expression.
If for an incoming event e of type T, a case ci evaluates
to true, a corresponding output port

icout is activated.
Evaluations to false are not considered; however, if all
cases evaluate to false, an (optional) default port outdefault is
activated.
Business-object conditions (re-)evaluate a Boolean
expression b whenever a referred business-object instance
is updated in a S&R rule’s action part somewhere in the
application; typically, a business-object condition will test
the current value of this very instance. A measure condition
m = (M, K, b), for instance, is defined by:

Figure (c) shows a component for supervising measures of a measure
type ‘AlarmsPerServer’.

Sub-pattern component
Sub patterns [Figure (d)] allow (re-)using pattern definitions in
higher-level rule logic, and therefore enable the creation of hierarchical
pattern-detection logic. A sub-pattern s = (p, I) is defined by:
• a referred pattern definition p
• a set of expressions I for each input parameter in p; these

input-parameter values allow for configuring a sub-level pattern
definition and adapting it – either statically or dynamically – to the
certain semantics of the super-level rule logic.

The sub-pattern’s output ports correspond to the signal components
as defined in the referred pattern definition p, i.e., for each signal
component signali in p there is an output port outi in s. Output
ports may thus be considered as backward channel from the sub-level
pattern-detection logic back to the super-level pattern-detection logic.
Whenever a signal component is activated in the sub-level pattern
definition, the corresponding output port is activated in the super-level
pattern.

Time-based components
Time-based components use internal clocks for activating their output
ports and serve as pattern-internal event triggers.
Timers [Figure (d)] feature two precondition ports ‘start’ and ‘stop’ for
starting and stopping a timer. If a running timer is stopped within a
user-defined time span Δt, an output port ‘non-fired’ is activated;
otherwise, after the expiration of Δt, an output port ‘fired’ is activated.
Timer components are typically used for actively responding to the
delayed occurrence of a certain business situation.
Schedulers [Figure (e)] facilitate recurring activations of downstream
rule components, e.g., to continuously monitor a rule artefact.
Schedulers do not have an input port; an output port ‘scheduled’
triggers regularly at user-defined intervals Δt.

352 H. Obweger et al.

Figure 7 illustrates the proposed separation in a concrete
example. On the left-hand side, the figure shows a decision
graph for responding to all those orders of customer #42
that use a carrier ‘Hawk Trucks Inc.’ for the shipment. On
the right-hand side, the figure shows the correlation set for
associating related order and shipment events. During
runtime, SARI uses the correlation set for correlating events
before starting the actual rule evaluation. An incoming
event e is then processed with the pattern-detection state for
the certain correlation session .S e Note that the decision
graph in Figure 7 does not contain any information on
how to link order events with related shipment events; this
aspect is defined via the correlation set, which makes the
pattern model less complex and focused on conditional
logic only.

7.1.2 Signals

Signals are special rule components that, whenever
activated, notify the detection of a noteworthy event
situation to higher-level event-processing logic. In
super-level pattern definitions, the signals of a pattern
definition p are accessible via corresponding output ports of
a sub-pattern component referring to p. In concrete S&R
rules, actions are associated with the various signals of a
rule’s pattern definition; a S&R rule therefore encapsulates
processing logic of the form ‘If signal s is activated in the
pattern-detection logic, then execute action.’

To provide access to selected characteristics of a
matching event situation in a controlled and abstracted
manner, signal components define a set of output
parameters O, where

(){ }1 2, , ..., | , , , 1 .n j j j jO out out out out i t e j n= = ≤ ≤

An output parameter out = (i, t, e) is defined by an identifier
i, a data type t and a correctly-typed expression e. When a
signal component is activated, an output parameter’s
expression is evaluated on the underlying event data,
thereby generating the output parameter’s actual value.

Additionally, signals can be configured based on the
following properties:

• Reset rule state: SARI’s rule engine allows for
completely resetting the state of a pattern definition for
a given correlation session. If this property is set for an
action component, the decision graph is reset
automatically each time the component is activated.
Newly incoming business incidents are then processed
without considering previous events.

• Silence interval: Silence intervals allow an application
designer to prevent cascading actions, e.g., when a
certain threshold is exceeded. Beginning with the
first successful execution of the described action, a
so-configured component suppresses all further
executions for the given period of time.

Taken together, signals along with their output parameters
constitute the counterpart to above-described input
parameters regarding the encapsulation and abstraction of
concrete pattern-detection logic in pattern definitions.

7.2 Action model

The action model covers the ‘respond’ part of SARI’s
approach to rule-based event processing through so-called
action definitions. Being associated with a signal of a S&R
rule’s pattern part, a concrete action is then executed each
time the described event situation is detected in an incoming
stream of events.

Actions currently supported by SARI are listed below.
By definition, each action definition defines a set of input
parameters I; as with pattern definitions, these input
parameters allow configuring encapsulated reaction logic to
the business scenario to which it is applied. When used as
part of a concrete S&R rule, input-parameter expressions
may comprise output parameters of the corresponding
signal; the respond part of a rule may then be dynamically
adapted to characteristics of the detected event situation.

• Event actions describe a response event to be created
and published whenever the action is executed. Such
response may in turn trigger a concrete action in the
source system (e.g., switch off a server) or an
appropriate event service (e.g., send an e-mail), or serve
as an input for another, downstream rule instance. An
event-action definition e = (T, E) is defined by:
1 the event type T = {(i1, t1), (i2, t2), …, (in, tn)} of the

described response event
2 a set of attribute expressions E = {ei | ei: I∗ → ti,

1 < i < n} for each event attribute (ii, ti) ∈ T, where
I∗ denotes the set of possible input-parameter
assignments.

Having the ability to directly or indirectly affect
the source system, response events are the ultimate
outcome of any event processing in SARI. Business-
object actions as described below, by contrast, can be
considered auxiliary actions for generating appropriate
response events.

• Business-object actions comprise several actions for
creating and updating business objects. Business-object
actions are dynamically retrieved from plugged-in
business object providers. For instance, a measure
action m = (K, v) for incrementing or decrementing
instances of a user-defined measure type M is defined
by:
1 a set of key expressions E = {ei | ei: I∗ → ti,

1 < i < n} for each of n key properties (ii, ti) of M,
identifying the concerned measure instance,

2 an expression :v I ∗ → calculating the value of
the addend, i.e., the value by which the measure
shall be increased or decreased.

 Model-driven rule composition for event-based systems 353

8 Event processing model

The proposed architecture is completed by the event
processing model, which describes the overall event-
processing logic of a SARI application in the form of
so-called event-processing maps. Event processing maps are
user-defined orchestrations of sense adapters, event
services, and response adapters; the proposed meta-model
is shown in Figure 9.

Figure 9 Event processing meta-model

Sense adapters translate real-world incidents into events of
respective event types as defined in the application’s event
model. Typical sense-adapter implementations read data
from message queues, log files, or are invoked actively by
other parts of a company’s IT landscape. Events are then
routed through a network of event services according to
user-specified links, so-called event channels, between the
various map elements. In contrast to request/response-like
interaction styles as, for instance, known from SOAP’s
message exchange patterns (W3C, 2007), event processing
map use an asynchronous, message-based interaction style
for routing events where a sender operates independently
from the potential receivers of an event and their actions.

Event services receive input events from a collection of
input ports, process these events based upon the
requirements of the given business scenario, and publish
response events to a collection of output ports. Event
services cover any kind of event-triggered activity
within an event-processing map; typical event-service
implementations could, for instance, filter, transform or
enrich event data. SARI offers a rich collection of
configurable event services for the most common event-
processing tasks. For custom tasks, a .NET API enables
application developers to implement event services as .NET
assemblies and incorporate arbitrary event-processing logic.
Rule services are specialised event services that allow
evaluating a set of S&R rules on the incoming event stream.

Response events are finally routed to one or more
response adapters, which translate the response event into a
format understandable to the underlying source system. A
response event adapter could, for instance, add a message to
a message queue, send an e-mail, or call an API.

Taken together, the following issues are addressed
within a SARI application’s event processing model:

• configuration of event services for processing steps

• interfaces to external systems for receiving data (sense)
and for responding by executing business transactions
(respond)

• event data transformations, event data analysis and
persistence.

Figure 10 shows an exemplary event processing map for
integrating and processing events from a workload
automation system. Data is collected and received from
source-system-specific adapters, which capture data from a
job-scheduling system. Incoming events are enriched in
order to prepare the event data for the rule processing. A
typical example would be the attachment of additional job
data; consider, for instance, scenarios where a source event
only holds a job ID while the job’s estimated runtime is
required for the downstream decision-making logic. The
rule service processes the enriched events according to S&R
rules, which generate response events when noteworthy
event situations are detected. The fired response events are
published on the output port of the rule service and
forwarded to response adapters. The response adapters
transmit the response events to external systems by sending
notifications or invoking a script in the workload
automation system.

Figure 10 Event processing model with rule services (see online
version for colours)

...

9 Example: intelligent workload automation

Modern IT landscapes have become highly complex
environments, encompassing hybrid platforms and
approaches, resources that are spread geographically and
among a variety of different platforms, workloads that are
allocated dynamically, and processes that change in
response to new demands. As IT applications move to
virtual or cloud environments, the need for intelligent
automation software will become even greater.

More and more companies therefore begin to migrate
from simple, time-based automation approaches (‘start job x
at y o’clock’) to systems that support context awareness and
the tracking of processes across the enterprise. Such systems
automate tasks on an event-driven basis: ‘start job x when y
occurs’. Also, for maximum agility, companies need tools
that can automatically and in real-time identify patterns in

354 H. Obweger et al.

the complex web of running processes, predict potential
problems and needs before they become critical, and
respond with corrective actions. Such tools are able to
optimise the application and operational performance and
maximise the efficiency of the resource utilisation.

In the following, we present a S&R rule for
automatically controlling the jobs of a workload automation
system. For our example, we assume that a rule shall
monitor the resources of an IT environment (such as the
CPU utilisation) and continuously check for delays and
overload situations.

When modelling the rule for the above-stated business
problem, we first have to identify the events which have to
be evaluated for the rule processing, i.e., define the
application’s event model. For our example, we consider the
following event types:

• Job started: Raised whenever a job is started on a host.

• Job ended: Raised whenever a job is stopped on a host.

‘Job started’ and ‘job ended’ events are correlated with a
simple correlation set ‘job’, where events are linked if they
refer to the same job via their ‘job ID’ attribute. The
correlation set ‘job’ forms the basis for the example’s
pattern definition as described below.

Figure 11 shows the pattern definition for the above-
described business scenario. It checks for CPU utilisation
overheads and considerable overruns of estimated job-
execution times. If these situations occur in parallel, an
alarm signal ‘delayed by overload’ is raised. The signal
provides access to the concerned job ID, the estimated and
the real runtime of the job via output parameters. Also, the
signal is configured with a silence interval of ten minutes.
Input parameters allow configuring the concerned host
(‘host’) and the critical delay in percent (‘delay’).

On the left-hand side of the decision graph, a
business-object condition continuously checks the ‘CPU
utilisation’ measure for the specified host. Measures of said
measure type are updated centrally in another rule; an
update of a measure implicitly triggers the evaluation of
corresponding measure conditions within all pattern
definitions of the SARI application.

On the right-hand side, two event conditions are used to
identify delayed job executions on the specified host. In the
prior condition, the overall set of jobs is limited to those
running on the defined host. In the latter condition, the
difference between the ‘job ended’ and the ‘job started’
creation time (i.e., the job’s actual runtime) is compared to
the estimated runtime of the job as available from the ‘job
started’ event. If the job is delayed by more than the
user-defined percentage, the condition evaluates to true.
Please note that correlation aspects – ensuring that start and
end events actually belong to each other – are not
considered in the pattern model but follow from the
underlying correlation model.

Table 1 and Table 2 show possible action definitions.
For our example, we permit users to receive an e-mail
notification or to reserve additional CPU resources on the
target host by running a script on that host.

Figure 11 Pattern definition ‘delay by overload’ (see online
version for colours)

Table 1 Action definition ‘notify administrator’

Input parameters • Message (string)
• Receiver (string)

Description E-mail alarm Message to Receiver
Event type E-mailEvent

Event attribute Type Expression

Subject String ‘Alarm!’
Text String ‘Alarm Message: ‘ +

$IN_Message
Receiver String $IN_Receiver
Priority Integer 3

Table 2 Action definition ‘add new resources to host’

Input parameters • Number (integer)
• HostName (string)

Description Reserve additional Number CPUs for host
HostName

Event type ExecuteScriptEvent

Event attribute Type Expression

Script String ‘…’ + $IN_Number + ‘…’
HostName String $IN_HostName
User String ‘foo’
Password String ‘bar’

SARI features a web client for composing S&R rules from
predefined pattern definitions and action definitions. In a
first step, the user associates action definitions to the
various signals of a pattern definition. In a second step, the
user defines values for all input parameters. Finally, the user
can activate the so-defined rule and add it to a rule service.

 Model-driven rule composition for event-based systems 355

10 Experimental results

In the course of our research we conducted
several experiments to evaluate the performance of
S&R rules in real-world business scenarios. The findings
highlight differences in processing rules of different types
and quantities, and illustrate the performance implications
of rule processing within a distributed execution
environment. In the following, we compare the evaluation
performance for sets of simple rules and sets of complex
rules, where in both cases, the number of rules (rule sets
of 10 rules vs. rule sets of 100 rules) and the number of
execution nodes (single-node environments vs. two-node
environments) is varied. For the presented measurements,
systems with 4 dual-core CPUs and 8 GB of memory were
used.

10.1 Processing simple rules, without event
correlation

Our first experiment concerns the evaluation of simple rules
that do not require event correlation; as described in
Section 7, a so-defined decision graph is evaluated
independently for each incoming event. In detail, the
investigated rule sets are configured to satisfy the following
conditions:

• total number of triggering event types: 10

• average number of attributes considered in a rule: 5

• no event correlation

• typical rule example: discovery of abnormally ended
jobs or agents.

Figure 12 shows the results of our evaluation. Given a rule
set of 10 rules and a single execution node, SARI’s rule
engine was able to process 9,903 events per second. The
results show that the throughput depends on the number of
rules being processed. Adding additional nodes to the
system increases the throughput nearly linearly.

Figure 12 Processing simple rules without event correlation
(see online version for colours)

10.2 Processing complex rules, with event
correlation

Our second experiment focused on complex rules that
require the usage of event correlation to yield meaningful
results. In our evaluation, rules of the smaller rule set are
based upon five different correlation sets in total, and rules
of the larger rule set are based upon 8 different correlation
sets in total. Besides, the investigated rules sets are
configured to satisfy the following characteristics:

• total number of triggering event types: 10

• average number of attributes considered in a rule: 7

• event correlation: events correlated up to 8 dimensions
(job, job type, job plan, agent, agent type, host, host
group, client)

• 10% of all rules include aggregation functions over
correlated events

• 10% of all rules include business-object updates and/or
queries

• typical rule example: correlation of job events for hosts,
calculation of an average error rate and discovery of
high average error rate by host.

Figure 13 Processing complex rules with event correlation
(see online version for colours)

Figure 13 shows the results of our evaluation. On a single
execution node, SARI’s rule engine was able to process
5,940 events for the smaller rule set and 3,820 events for the
larger one. The further decrease in throughput observed
with a larger number of rules is caused by additional
expenses for event correlation and the evaluation of
aggregation functions on so-defined groups of events, as
well as for updating and querying business objects.
Adding an additional execution node to the SARI system
increased the throughput to 8,389 events and 5,422 events,
respectively. From our experiments, we determined that
using event correlation on multiple execution nodes incurs a
performance overhead of about 30% resulting from

356 H. Obweger et al.

node-to-node communications when sharing correlation
sessions. This is necessary since events of a common
correlation session may initially be processed on different
execution nodes. For more details on the use of correlation
sessions for synchronisation purposes, the interested reader
may refer to McGregor and Schiefer (2004).

11 Conclusions and outlook

Today’s networked business environments require systems
which are adaptive and easy to integrate. Event-based
systems have been developed and used to control
business processes with loosely coupled systems. In this
article, we presented a model-driven approach to building
S&R rules for an event-based system.

By handling various aspects of an event-based
application in separate, decoupled sub-models, SARI aims
for expressiveness as well as manageability: The event
model defines the structure of all possible event data.
Relationships between incoming business incidents – e.g.,
whether two events belong to the same real-world business-
process instance – are defined in the correlation model. The
business object model defines virtual representations of
real-world business objects such as customers, and
allows for managing business state in a controlled and
easy-to-handle manner. The rule model defines S&R rules,
which associate noteworthy event situations – so-called
event patterns – with appropriate reaction logic. An event
situation may comprise sets of correlated events and
business objects. Orchestration and integration aspects
finally are handled in the event processing model.

S&R rules are the key element of a SARI application. In
the event pattern model, pattern definitions are created from
easy-to-understand pieces of pattern-detection logic –
so-called rule components – which are combined with each
other in a directed, acyclic decision graph. An event
situation matches a so-defined pattern definition if it
conforms to (at least) one path through the decision
graph. Via a set of input parameters, the encapsulated
pattern-detection logic can be adapted to different business
scenarios. Signals and output parameters provide access to
characteristics of a concrete event situation in a controlled
and abstracted, e.g., to dynamically configure response
actions. A graphical pattern-definition editor makes pattern
modelling accessible to business users; exemplary rule-
component shapes and pattern-definition renderings were
presented throughout this article.

Taken together, the proposed approach simplifies the
creation and management of event-triggered rules by means
of:

• clean separation of concerns between an event, a
correlation, a business-object, a pattern and an action
model

• creation of complex pattern-detection logic from
easy-to-understand pieces, via a graphical editor

• parameterisation and free composition of
(encapsulated) event-processing logic, making it
reusable across business scenarios and higher-level
pattern definitions (i.e., hierarchical pattern modelling).

The work presented in this article is part of a larger,
long-term research effort aiming at the development of a
rule-management system for event-based systems. The key
focus of this future research work is on modelling and
managing comprehensive rule libraries for industry
solutions. Also, we want to add forecasting components to
SARI which shall allow business users to recognise
emerging event patterns in order to proactively trigger
counteractions.

References
Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N. and
Zdonik, S. (2003) ‘Aurora: a new model and architecture for
data stream management’, VLDB Journal, Vol. 12, No. 2,
pp.120–139.

Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U.,
Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A.S.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. and Zdonik, S.
(2005) ‘The design of the Borealis stream processing engine’,
Proceedings of the Conference on Innovative Data Systems
Research, pp.277–289.

von Ammon, R., Emmersberger, T., Greiner, T., Paschke, A.,
Springer, F. and Wolff, C. (2008) ‘Event-driven business
process management’, Proceedings of the Int. Conference on
Distributed Event-Based Systems.

Bailey, J., Crnogorac, L., Ramamohanarao, K. and
Sondergaard, H. (1997) ‘Abstract interpretation of active
rules and its use in termination analysis’, Proceedings of the
Int. Conference on Database Theory, pp.188–202.

Baralis, E. and Widom J. (1994) ‘An algebraic approach to rule
analysis in expert database systems’, Proceedings of the Int.
Conference on Very Large Data Bases, pp.475–486.

Barbará, D., Mehrota, S. and Rusinkiewicz, M. (1994) ‘INCAS: a
computation model for dynamic workflows in autonomous
distributed environments’, Technical report, Department of
Computer Science, University of Houston.

Bussler, C. and Jablonski S. (1994) ‘Implementing agent
coordination for workflow management systems using active
database systems’, Proceedings of the Int. Workshop on
Active Database Systems, pp.53–59.

Chen, S-K., Jeng, J-J. and Chang, H. (2006) ‘Complex event
processing using simple rule-based event correlation engines
for business performance management’, Proceedings of the
Int. Conference on E-Commerce Technology and the Int.
Conference on Enterprise Computing, E-Commerce, and
E-Services.

Dayal, U., Hsu, M. and Ladin, R. (1990) ‘Organizing long-running
activities with triggers and transactions’, SIGMOD Rec,,
Vol. 19, No. 2, pp.204–214.

Esper, Available at http://esper.sourceforge.net.
Geppert, A. and Tombros, D. (1998) ‘Event-based distributed

workflow execution with EVE’, Proceedings of the IFIP
international Conference on Distributed Systems Platforms
and Open Distributed Processing, pp.427–442.

 Model-driven rule composition for event-based systems 357

Haeckel, S. (1999) Adaptive Enterprise: Creating and Leading
Sense-and-Respond Organizations, Harvard Business School
Press.

Luckham, D. (2005) The Power of Events, Addison Wesley.
Ludascher, B. (1998) ‘Integration of active and deductive database

rules’, PhD thesis, University of Freiburg, Germany.
McGregor, C. and Schiefer, J. (2004) ‘Correlating events for

monitoring business processes’, Proceedings of the Int.
Conference on Enterprise Information Systems, pp.198–205.

Rozsynai, S., Schiefer, J. and Schatten, A. (2007) ‘Concepts and
models for typing events for event-based systems’,
Proceedings of the Int. Conference on Distributed
Event-Based Systems, pp.62–70.

Rozsnyai, S. (2008) ‘Managing event streams for querying
complex events’, PhD thesis, Vienna University of
Technology, Austria.

Schiefer, J., Obweger, H. and Suntinger, M. (2009) ‘Correlating
business events for event-triggered rules’, RuleML, pp.67–81.

Schiefer, J. and Seufert, A. (2005) ‘Management and controlling of
time-sensitive business processes with sense & respond’,
Proceedings of the Int. Conference on Computational
Intelligence for Modelling, Control and Automation,
pp.77–82.

Suntinger, M., Obweger, H., Schiefer, J. and Gröller, M.E. (2008)
‘The event tunnel: exploring event-driven business
processes’, Computer Graphics and Applications, Vol. 28,
No. 6, pp.46–55.

Seiriö, M. and Berndtsson, M. (2005) ‘Design and implementation
of an ECA rule markup language’, RuleML, pp.98–112.

Wu, P., Bhatnagar, R., Epshtein, L., Bhandaru, M. and Shi, Z.
(1998) ‘Alarm correlation engine (ACE)’, Proceedings
of the Network Operations and Management Symposium,
pp.733–742.

World Wide Web Consortium (2007) SOAP 1.2, available at
http://www.w3.org/TR/soap12.

Zdonik, S., Stonebraker, M., Cherniack, M. Cetintemel, U.,
Balazinska, M. and Balakrishnan, H. (2002) ‘The Aurora and
Medusa projects’, IEEE Data Engineering Bulletin, Vol. 26,
No. 1.

Notes
1 Unless otherwise stated, the described attribute-type model

will apply to all (non-event-) data types as discussed in the
remainder of this article.

2 For further details on SARI’s tailored expression language,
the interested reader may refer to Rozsynai (2008).

