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Abstract: This article presents a novel framework for creating sense-and-respond rules, which 
allow detecting noteworthy event situations from streams of business incidents and responding to 
them in near real-time. Focusing on expressiveness as well as manageability, the proposed 
framework uses a model-driven approach for the rule definition, where the different aspects of a 
rule are specified in clearly separated, comprehensible sub-models. This includes models for 
event-type and correlation information, virtual business-object representations, event patterns 
(‘sense’) and actions (‘respond’), as well as event processing networks. Event patterns are 
modelled in a visual decision graph from easy-to-understand pieces of pattern-detection logic, 
and/or from sub-level event patterns. The proposed system has been fully implemented with a 
service-oriented architecture. The rule model is illustrated with a business case from the 
workload-automation domain. 
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1 Introduction 

Complex event processing (CEP) enables real-time 
monitoring of business situations and automated  
decision-making in order to respond to threats or seize  
time-critical business opportunities. Applications thereof are 
manifold, ranging from logistics to fraud detection and 
automated trading; recently, the combination of CEP and 
business process management has led to the discipline of 

event-driven business process management, ED-BPM  
(von Ammon et al., 2008). The underlying business model 
is sense-and-respond (S&R) as proposed by Haeckel 
(1999). It is rooted in the idea that purposeful adaptive 
system design is more effective to deal with discontinuities 
and fast-moving industry environments as compared to 
traditional plan-and-execute strategies. 

Event-based systems typically encompass a generic data 
integration layer with a multitude of adapters in order to 
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receive (sense) business events from various source systems 
and respond back to these systems. Yet, the determinant of 
value and effectiveness of a CEP system is the evaluation 
process in between sensing and responding, namely the 
decision-making. Event-based applications typically use 
reactive event-pattern rules for modelling use-case specific 
decision logic. Event-pattern rules – which Luckham (2005) 
called ‘the foundation for applications of CEP’ – may be 
considered as event-processing logic in the form ‘if situation 
x occurs in the event stream, then generate response y’. In 
the workload automation domain, for instance, an 
exemplary rule could be defined as follows: “If the 
frequency of error messages increases by a factor of two and 
tasks are delayed by more than 5%, then allocate additional 
resources for the execution environment”. 

For building large enterprise solutions based on CEP, 
mainly two requirements are key success factors: 
expressiveness and manageability. Clearly, expressiveness 
guarantees that a broad variety of use cases and scenarios 
can be modelled with the framework. Practical experience 
shows, however, that the development of event-based 
applications is a highly challenging task that requires design 
decisions at different levels of abstraction: Which  
real-world actions and state-changes shall emerge into event 
data? Which relationships exist between events? Which 
kind of event situation shall trigger what kind of response? 
Thus, equally important, manageability refers to ease of 
creation, administration and modification of complex rule 
sets. 

In this article, we introduce the rule management of  
the event-based system sense-and-respond infrastructure 
(SARI) as originally proposed by Schiefer and Seufert 
(2005). In SARI, business situations and exceptions are 
modelled with S&R rules which have been designed to be 
created and modified by business users. SARI offers a  
user-friendly modelling interface for event-triggered rules 
with a correlation model and a graph for representing 
business situations as a combination of easy-to-understand 
pieces of pattern-detection logic. High expressiveness and 
usability is achieved by a rich set of predefined rule building 
blocks and a tailored expression language for formulating 
conditions and calculations. A clean separation of concerns, 
splitting the overall definition of a SARI application into a 
set of decoupled sub-models, facilitates manageability and 
reuse of components. 

The remainder of this article is organised as follows: 
Section 2 discusses related work. In Section 3, we  
provide an overview of the proposed application model  
and the relationships between the various sub-models. 
SARI’s event model, correlation model and business-entity 
model are introduced in Section 4 to Section 6. Section 7 
presents a detailed description of SARI’s rule model. The 
implementation of the event-processing model is discussed 
in Section 8. Section 9 shows SARI ‘in action’ with a  
real-world use case from the workload automation domain. 
Section 10 presents the results of an experimental 
evaluation. Section 11 concludes this article and gives an 
outlook to future work. 

2 Related work 

Related work can be divided into work on active event 
processing, event algebras in the active database 
community, work on event/action logics, updates, state 
processing/transitions, and temporal reasoning in the 
knowledge representation domain. 

There has been a lot of research and development 
concerning knowledge updates and active rules in the area 
of active databases and several techniques based on 
syntactic [e.g., triggering graphs or activation graphs 
(Baralis and Widom, 1994)] and semantics analysis (e.g., 
Bailey et al., 1997) of rules have been proposed to ensure 
termination of active rules (no cycles between rules) and 
confluence of update programmes (always one unique 
outcome). The combination of deductive and active rules 
has also been investigated in different approaches mainly 
based on the simulation of active rules by means of 
deductive rules (Ludascher, 1998). However, in contrast to 
our work, these approaches often assume a very simplified 
operational model for active rules without complex events 
and event/condition/action (ECA) related event processing. 
ECA rules generally associate a triggering – possibly 
composite – event with one or more conditions and a set of 
actions. When the triggering event is detected and all 
conditions evaluate to true, the action part is executed. 

Several CEP and event stream processing (ESP) systems 
have been developed, where many of them use an  
SQL-based approach for querying event streams. An 
example is Esper (http://esper.sourceforge.net), which is an 
open source event-stream engine that allows analysis of 
event streams with SQL-queries for defining correlations 
between events and for detecting event patterns. Aurora 
(Abadi et al., 2003), as well as its successors Borealis 
(Abadi et al., 2005) and Medusa (Zdonik et al., 2002), are 
also SQL-based processing engines, which provide  
efficient scheduling service and quality-of-service delivery 
mechanisms. 

ruleCore (Seiriö and Berndtsson, 2005) is an  
event-driven rule processing engine supporting ECA rules, 
and providing a user interface for building composite events 
and rules. 

Wu et al. (1998) propose an event correlation approach 
with rules in the ‘conclusion if condition’ form, which are 
used to match incoming events via an inference engine. 
Based on the results of each test and the combination of 
events in the system, the rule engine analyses data until it 
reaches a final state. 

Chen et al. (2006) show an approach for rule-based 
event correlation. In their approach, they correlate and adapt 
complex/structural extensible markup language (XML) 
events corresponding to an XML schema. They describe an 
approach for translating hierarchical structured events into 
an event model that uses name-value pairs for storing data. 

ECA rules have also been proposed by several authors  
for workflow execution (e.g., Barbará et al., 1994; Bussler  
and Jablonski, 1994; Dayal et al., 1990; Geppert and  
Tombros, 1998). In event-driven workflow execution, 
events and event-condition-action rules are the fundamental 
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mechanisms for defining and enforcing workflow logic. 
Processing entities enact workflows by reacting to and 
generating new events. The foundation for events facilitates 
the integration of processing entities into coherent systems. 
Some of these systems (Barbará et al., 1994), use composite 
events to detect complex workflow situations. EVE 
(Geppert and Tombros, 1998) is a system using ECA rules 
for workflow management addressing the problem of 
distributed event-based workflow execution. 

3 A model-driven approach to event-based 
decision-making 

In practice, manageability is as important for the success of 
rule-based event processing as is expressiveness. In order to 
provide manageability and usability also for large-scale 
solutions, SARI splits the overall definition of an  
event-based application into a collection of smaller, 
decoupled sub-models. Each sub-model thereby describes a 
certain aspect of an event application, beginning with the 
structure of all possible event data and ending with the 
orchestration of self-contained event-processing units such 
as adaptors and event services. Figure 1 shows the various 
sub-models of a SARI application along with the 
relationships between them. Detailed discussions of these 
models are presented in Section 4 to Section 8. 

Figure 1 SARI application model (see online version  
for colours) 

 

3.1 Event model 

The event model provides abstract descriptions of all kinds 
of events that may occur within a SARI application, i.e., 
may emerge directly from the source system or be created 
virtually during the event processing. These descriptions – 
referred to as event types in the remainder of this article – 
declare all relevant characteristics of both the incident itself 
and the context in which it occurs. In the logistics domain, 
for instance, an event model would typically define events 
such as ‘order placed’, with properties such as the 
corresponding user account and the kinds and quantities of 
goods, ‘order shipped’, etc. 

Event types form the foundation of any SARI 
application and generally allow higher-level models to be 

defined in a type-safe manner. The exact uses of event types 
in the various sub-models are discussed below. 

3.2 Correlation model 

The correlation model defines in an abstract manner 
whether two events relate to each other, i.e., whether they 
belong to a coherent sequence of real-world business 
incidents such as a business process. For instance, given an 
event model with two event types ‘order placed’ and 
‘shipment started’, a correlation relationship ‘order process’ 
may link pairs of ‘order placed’ and ‘shipment started’ 
events by their order IDs. At runtime, so-defined classes of 
event situations are then used for partitioning the overall set 
of events and handling these partitions separately within the 
SARI application’s event-processing logic. It is essential to 
note, however, that a correlation model does not define 
restrictions on the exact characteristics of a concrete event 
situation, such as specific event-attribute values or the 
ordering or quantity of events. SARI instead allows for a 
strict decoupling between the correlation aspect and the 
pattern-modelling aspect, thereby simplifying the definition 
of both halves and facilitating the reuse of correlation 
information across a SARI application. 

The correlation model directly builds upon the event 
model for defining relationships in an abstract manner. By 
itself, the correlation model serves as a basis for the  
pattern-definition part of the rule model, where application 
designers may define classes of ‘noteworthy’ event 
situations by imposing additional constraints on sets of 
correlated events. 

3.3 Business object model 

The business object model enables application developers to 
define virtual representations of the various business objects 
existing in the underlying business environment. These 
entities may then be used to encapsulate certain kinds of 
business states in a controlled, intuitive and computationally 
efficient manner, and can be updated and queried from 
higher-level event-processing logic. Slimming down  
rule-definition logic by the handling of complex data over 
time, the business-object model thereby simplifies the 
definition and detection of noteworthy business situations. 

Business objects are updated and queried through  
event-pattern rules as defined in the rule model. Albeit 
updates are always triggered by the occurrence of a 
respective event pattern, the definition of business objects 
themselves is generally independent from the event model, 
the correlation mode and the rule model. 

3.4 Rule model 

The rule model may be considered the key part of  
the proposed architecture and forms the basis for any kind 
of rule-based event processing in SARI. In so-called S&R 
rules, classes of noteworthy event situations – so-called 
event patterns – are associated with appropriate reaction 
logic, so-called actions. Whenever an incoming stream of 
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events matches the event pattern, the associated actions are 
triggered. 

An event pattern may be considered an additional 
constraint on either a class of single business incidents as 
defined in the event model or on a class of business 
situations as defined in the correlation model. For instance, 
an event pattern ‘order delayed by x days’ would select from 
the overall set of all ‘order processes’ only those cases that 
are delayed by x days or longer. Actions allow generating 
response events as defined in the event model or updating 
virtual business object representations as defined in the 
business object model. S&R rules are referenced in the event 
processing model to be executed as part of a specific 
processing path through a SARI application. 

3.5 Event processing model 

The orchestration of self-contained event-processing agents, 
as well as their integration with underlying source systems, 
is finally described in an application’s event processing 
model. In so-called event-processing maps, the model 
describes: 

a how real-world business occurrences are translated to 
events of respective event types 

b how said events are processed in an orchestration of 
event services 

c how response events trigger concrete actions in the 
underlying business environment. 

S&R rules as defined in the underlying rule model are 
mapped to rule services, special event-processing units that 
evaluate sets of rules on the incoming stream of events and 
publish possible response events. 

4 Event model 

Forming the bottom layer of the proposed architecture, the 
event model provides abstract descriptions of all kinds of 
events that may emerge from the source system or be 
created virtually during the event processing. 

SARI builds upon a strongly-typed event model that is 
oriented towards the type systems of modern object-oriented 
programming languages. Figure 2 sketches the meta-model 
for a SARI application’s event-type library. An event type  
T = {a1, a2, …, an | ai = (ii, ti)} is defined by a set of event 
attributes, each having an identifier i and an event-attribute 
type. SARI supports three kinds of event-attribute types:1 

• Single-value types include primitive types (such as 
integers, strings, etc.) as well as event types (i.e., an 
event may hold auxiliary events as event attributes). 

• Collection types are lists of attribute-typed elements. 

• Dictionary types eventually associate attribute-typed 
values with primitive-typed keys. 

An event type T′ may furthermore be in a subtype 
relationship with a base event type T; as usual, a  

sub event-type inherits all event attributes from the base 
type, i.e., T ⊆ T′. By definition, each event type must 
originate from a root event type ‘base event’. ‘Base event’ 
defines a timestamp ‘creation time’ – holding an event’s 
time of occurrence – as well as a unique identifier ‘ID’. For 
further details on SARI’s event model, the interested reader 
may refer to Rozsnyai et al. (2007). An exemplary event 
type ‘order received’ is depicted in Figure 3. 

Figure 2 Event type meta-model 

 

Figure 3 Exemplary event type (see online version for colours) 

 

5 Correlation model 

Setting up on the event model, the correlation model defines 
how instances of the various event types relate to each other 
in coherent sequences of incidents such as business 
processes. So-defined classes of event situations then allow 
partitioning the overall set of events during the event 
processing and the ex-post analysis of event data (Suntinger 
et al., 2008), and also form the basis for the rule model as 
described in Section 7. 

SARI applications define correlation information in  
so-called correlation sets (Schiefer et al., 2009), a 
declarative model that allows incorporating and combining 
diverse correlation approaches through correlation bands. 
Each correlation set then corresponds to one class of event 
situations. In the logistics domain, for instance, a correlation 
set ‘shipment’ might correlate the events of all shipment 
processes as emerging from the source system. A concrete 
event-situation instance – e.g., the events of the specific 
shipment process #42 – is referred to as correlation session. 

Figure 4 sketches the meta-model for correlation sets. A 
correlation set s = {b1, b2, …, bn} is defined by a non-empty 
collection of correlation bands. Each correlation band 
describes a specific correlation approach for events of one 
or more event types as defined in the SARI application’s 
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event model, thereby defining a part of the overall event 
situation. A first correlation band bi may, for instance, 
describe the correlation approach for ‘order received’, 
‘shipment ready’ and ‘order shipped’ events as being based 
upon equal order IDs, while a second correlation band bi 
may describe the correlation approach for ‘order shipped’ 
and ‘shipment received’ events as being based upon an 
explicit reference from the ‘shipment received’ events to the 
causally preceding ‘order shipped’ event (Figure 5). 

Figure 4 Correlation set meta-model 

 

Figure 5 Exemplary correlation set (see online version  
for colours) 

 

At the time of writing, SARI supports the following set of 
correlation bands: 

• Elementary correlation bands correlate events of 
different types based upon equal event-attribute values. 
Let  = {T} be an event-type library. An elementary 
correlation band e ⊆ {(T, a) | T ∈ , a ∈ T} is defined 
by a non-empty set of event types together with an 
event attribute per type. Given a correlation band  
e = {(T1, a1), (T2, a2), …, (Tn, an)}, two events ei: Ti and 
ej: Tj are then correlated (and thus part of the same 
correlation session) if ( ) ( ).

i je i e jvalue a value a=  Note 
that a correlation band’s event attributes do not 
necessarily have the same identifier. Also, note that a 
correlation set may comprise only one event type T, i.e., 
n = 1; then, it defines a subset of all T-events. 

• Self-referencing correlation bands allow implementing 
scenarios where events explicitly refer to their (causal) 
predecessors. As with elementary correlation bands, a 
self-referencing correlation band s ⊆ {(T, a) | T ∈ ,  
a ∈ T} is defined by a non-empty set of event types, 
and, for each event type, an event attributes. Two 
events e and f, f of type Ti, are then correlated if 

valuee(ID) = valuef(ai), where ‘ID’ signifies the  
unique identifier attribute of an event. 

• Knowledge-based correlation bands are similar to 
elementary correlation bands; however, for evaluating 
‘equality’ between event-attribute values, an (external) 
knowledge base is queried. For instance, two string 
values ‘Vienna’ and ‘Wien’ could be detected as 
equivalent via an online dictionary. A knowledge-based 
correlation band k = (e, b) therefore extends an 
elementary correlation set e by a knowledge-based b, 
offering methods for testing equality between  
two event-attribute values. 

• Correlation sets may finally be (re-)used as correlation 
bands in higher-level correlation sets, which enables the 
hierarchical modelling of event situations. 

6 Business object model 

CEP systems define steering logic on event-based 
abstraction of real-world business environments. This 
approach fits particularly well for monitoring streams of 
self-contained business incidents; however, it tends to hit 
the wall when the overall state of real-world business 
objects needs to be derived from sequences of incremental 
updates. Consider an example from the system-monitoring 
domain, where a system administrator shall receive a 
notification whenever the number of alarms on a server 
exceeds a specified threshold. Here, a purely event-based 
system would have to correlate all alarm events within a 
sliding time window and perform a ‘count’ operation each 
time an alarm occurs. It is easy to see that for long time 
windows and/or high-frequent updates, this approach 
inevitably leads to serious performance issues. 

SARI therefore provides a separate business object 
model, allowing application designers to encapsulate state in 
a controlled and intuitive manner. The business object 
model is implemented via so-called business object 
providers, plug-in-like components that – generally 
independent from other parts of the SARI architecture – 
manage specific kinds of business objects as application-
wide, typed data-structures. Depending on their specific 
semantics, business object providers define a public 
interface for updating and querying the state of their data; 
read and write operations are accessible via SARI’s rule 
model. 

Given a certain business scenario, application designers 
will therefore: 

a chose and incorporate appropriate business object 
providers 

b for each business object provider, define the exact 
structure(s) of the required business object 
representations in the form of business object types. 

In any case, a business object type specifies a (possibly 
composite) entity key; at runtime, entity keys then allow 
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identifying a specific instance of the given business object 
type. 

SARI currently features two kinds of business objects: 

1 Measures are the most basic kind of business object and 
basically may be considered numeric values that are set 
via a measure’s update operations. Possible updates 
include basic operations such as increment/decrement, 
but also complex functions such as a moving average 
over a specified time window. 

 A measure type M = (K, v, h) is defined by: 
• A set of key properties K = {(i1, t1), (i2, t2), …, (in, 

tn)}; each key attribute (i, t) is defined by an 
identifier i and a data type t. 

• An initial value .v∈  
• A Boolean flag h ∈ {0, 1}, defining whether the 

system shall maintain the complete update history 
of a measure. The development of a measure over 
time can play a crucial role for the ex-post analysis 
of a system. 

 Measures are typically used for counters. For 
implementing the above use-case of testing the number 
of server alarms against a defined threshold, an 
application designer would define a measure type 
‘alarms per server’ with a single, string-typed key 
property ‘server’ and an initial value of zero. For each 
incoming alarm event, a rule r1 would then increase the 
appropriate measure by one. A second rule r2 would 
supervise the measure and, when it exceeds the 
threshold, notify the administrator. 

2 Entities group sets of typed attributes and thus enable 
virtual representations of multi-variate real-world 
entities such as user accounts, suppliers, etc. Operations 
allow for continuously updating an entity’s attributes, 
thereby keeping it in sync with its real-world 
correspondence. An entity type e = (K, E) is defined by: 
• a set of key properties K 
• a set of entity attributes E = {(i1, t1, v1), …, (in, tn, 

vn)}; entity attributes define an identifier ii, a type ti 
and an initial value vi: ti. 

7 Rule model 

The detection of relevant patterns in continuous streams of 
business events is the key feature of CEP. Associating 
classes of noteworthy event situations with appropriate 
reaction logic, the rule model may therefore be considered 
the core of the proposed architecture. Together with the 
event-processing model, it defines the use-case specific 
decision logic of an event-based application. 

To facilitate the reuse of event-processing logic across 
different business scenarios, SARI implements a strict 
decoupling between pattern modelling – i.e., the definition 
of noteworthy event situations – and action modelling, i.e., 
the definition of reaction logic. The respective sub-models, 

the pattern model and the action model, are discussed 
below. For the creation of full-fledged S&R rules from 
pattern-detection and reaction logic, SARI finally provides a 
two step workflow: 

1 In a first step, IT experts and skilled business users 
create a catalogue of pattern definitions and action 
definitions. Pattern definitions describe classes of 
noteworthy event situations. Through a human-readable 
description of the described event situation and a set of 
input parameters, they enable business users to 
configure and apply the encapsulated pattern-detection 
logic without having to understand the event-based 
foundation of an application. Action definitions, 
similarly, abstract from concrete reaction logic. 

2 In a second step, business users may instantiate 
concrete rule logic by assembling the required ‘building 
blocks’ and setting appropriate  
input-parameter values. A so-created S&R rule then 
encapsulates business logic in the form ‘if situation 
occurs, then execute action(s)’ and can be evaluated in 
rule services as defined in the event processing model. 

7.1 Pattern model 

Powerful pattern-detection logic is key to successful 
applications of CEP. However, especially for complex 
business processes comprising a large number of business 
incidents, describing classes of noteworthy event situations 
in an abstract manner may place heavy demands on users. 
SARI aims to simplify this process by employing a  
‘divide-and-conquer’-like approach to modelling pattern 
definitions, where application developers compose complex 
pattern-detection logic from easy-to-understand pieces of 
logic such as ‘the occurrence of an event of type T, with 
certain attribute values’ or ‘the occurrence of a sub-pattern 
P’. These pieces – encapsulated in so-called rule 
components – are connected to each other in a directed, 
acyclic decision graph. At runtime, the predecessors in  
the graph are then considered as preconditions in the  
event-processing logic. To activate a component c – and 
thus bring it to play into the evaluation process – a concrete 
event situation must conform to (at least) one valid path 
through the decision graph. Depending on the evaluation 
result of c, further parts of the decision graph are activated, 
and so forth. 

The described, graph-based structuring of pattern-
detection logic suggests a graphical approach to pattern 
modelling, which may enable a comprehensive view of the 
overall pattern-detection logic as well as quick and easy 
access to single rule components. SARI provides a graphical 
pattern editor, which allows users to add, configure and 
connect graphical representations of rule components. 
Exemplary shapes are presented in Figure 8. 

7.1.1 Meta model 

Figure 6 shows the meta-model for pattern definitions. A 
pattern definition p = (C, P, I, c) is defined by a set of rule 
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components C, a set of precondition relationships P, a set of 
input parameters I, as well as an optional correlation set c. A 
concrete realisation of the presented meta model is 
presented in Section 9. 

Figure 6 Pattern definition model 

 

Rule components 

Encapsulating easy-to-understand pieces of pattern-
detection logic, rule components may be considered the key 
element of any rule-based event processing in SARI. 
Depending on its implementation, a rule component c ∈ C 
has a collection of input ports IN and a collection of output 
ports OUT; while input ports allow generally activating  
a rule component, output ports represent possible results of 
the encapsulated logic. Dependencies between components 
are modelled as precondition relationships between output 
ports and input ports. To allow multiple preconditions, a 
binary precondition operator specifies whether all (AND), 
at least one (OR) or exactly one (XOR) precondition must 
be fulfilled in order to activate an input port. 

According to its specific role within a pattern definition, 
a rule component may furthermore define diverse 
expressions on: 

a all business objects as defined in the business-object 
model 

b correlation sessions as constituted by the pattern 
definition’s correlation set c. 

Whenever the rule component is triggered, these 
expressions are evaluated on the current values of the 
referred business objects and the events of the on-hand 
correlation session, respectively; for instance, if an 
evaluation is directly or indirectly caused by an incoming 
event e, the given expression is evaluated on the correlation 
session S e  the event belongs to.2 

Possible rule-component implementations are listed  
in the bottom of Figure 6. Condition components, the  
sub-pattern component and time-based components provide 
a powerful toolkit for describing classes of noteworthy 
event situations. For a detailed description of SARI’s 

component library, the interested reader may refer to  
Figure 8. Signals are special components that notify the 
detection of an event situation to higher-level decision logic 
and are described in greater detail in the following section. 

Precondition relationships 

A precondition relationship p = (in, out) associates an output 
port out of a rule component ri ∈ C with an input port in of 
another rule component rj ∈ C. Cyclic dependencies are 
forbidden. 

Input parameters 

Input parameters of the form (i, t), where i is an identifier 
and t is a data type, allow adapting pattern-detecting logic to 
the concrete business scenario in which it is applied. When 
creating a pattern definition, an input parameter may be 
used as a typed placeholder across the various rule 
components of the decision graph. When using a concrete 
instance of the pattern definition – e.g., in a S&R rule – 
these placeholders are replaced by concrete values. 

Correlation set 

The proposed, model-driven approach to rule composition 
builds upon a strict decoupling of event correlation – 
defining classes of event situations on a common level, 
without further restrictions on the exact characteristics of a 
concrete situation instance – and event-pattern modelling, 
where for a given correlation set those characteristics of a 
concrete situation instance are defined that makes it 
noteworthy in a specific context. A pattern definition’s 
correlation set consequently defines the class of event 
situations upon which a decision graph shall be evaluated; 
given a correlation set s, the decision graph is evaluated 
separately for each correlation session of s. When omitting 
the correlation configuration, a decision graph is evaluated 
independently for each incoming event. 

Figure 7 Event correlation and pattern detection in SARI  
(see online version for colours) 
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Figure 8 Rule components (see online version for colours) 

Condition components • the measure type M 
• a set of expressions K for each key attribute in M, identifying the 

specific measure instance 
• a Boolean expression b. 

Condition components enable selective activations of 
downstream parts of a decision graph depending on the 
result of user-defined Boolean expressions on the underlying 
event situation. On the input side, all of the following 
components feature a single activator port: only if the 
required preconditions are fulfilled by an incoming event 
situation, the described pattern-detection logic is considered 
in the pattern-detection process. On the output side, a set of 
output ports represents the possible results of an evaluation. 
 In all of the following descriptions, we assume that a 
component is active, i.e., that its preconditions are fulfilled. 
Event conditions c = (T, b) evaluate a Boolean expression b 
whenever an event of a user-defined, ‘triggering’ event type 
T occurs in the event stream. In most cases, the result of 
an event condition depends on the most recent event of a 
correlation session, which is the triggering event itself. A 
so-defined event condition then describes the occurrence of a 
certain kind of business incident, and may be considered the 
core element of most decision graphs. 
 If for an incoming event e of type T, b is fulfilled, the 
condition’s ‘true’ port is activated; otherwise, the ‘false’ port 
is activated. Figure (a) shows the graphical pattern-editor’s 
rendering of an exemplary event condition ‘CPU-related 
alarm’, describing the occurrence of an alarm event with an 
error code of 17 or 39. 
Event cases [Figure (b)] are similar to event conditions; 
however, they allow users to group sets of Boolean 
expressions in a single component. An event case (T, C) is 
defined by: 
• A triggering event type T. 
• A collection of cases C. Each case is defined by an 

identifier and a Boolean expression. 
If for an incoming event e of type T, a case ci evaluates 
to true, a corresponding output port 

icout  is activated. 
Evaluations to false are not considered; however, if all 
cases evaluate to false, an (optional) default port outdefault is 
activated. 
Business-object conditions (re-)evaluate a Boolean 
expression b whenever a referred business-object instance 
is updated in a S&R rule’s action part somewhere in the 
application; typically, a business-object condition will test 
the current value of this very instance. A measure condition 
m = (M, K, b), for instance, is defined by: 

Figure (c) shows a component for supervising measures of a measure 
type ‘AlarmsPerServer’. 

Sub-pattern component 
Sub patterns [Figure (d)] allow (re-)using pattern definitions in 
higher-level rule logic, and therefore enable the creation of hierarchical 
pattern-detection logic. A sub-pattern s = (p, I) is defined by: 
• a referred pattern definition p 
• a set of expressions I for each input parameter in p; these  

input-parameter values allow for configuring a sub-level pattern 
definition and adapting it – either statically or dynamically – to the 
certain semantics of the super-level rule logic. 

The sub-pattern’s output ports correspond to the signal components 
as defined in the referred pattern definition p, i.e., for each signal 
component signali in p there is an output port outi in s. Output 
ports may thus be considered as backward channel from the sub-level 
pattern-detection logic back to the super-level pattern-detection logic. 
Whenever a signal component is activated in the sub-level pattern 
definition, the corresponding output port is activated in the super-level 
pattern. 

Time-based components 
Time-based components use internal clocks for activating their output 
ports and serve as pattern-internal event triggers. 
Timers [Figure (d)] feature two precondition ports ‘start’ and ‘stop’ for 
starting and stopping a timer. If a running timer is stopped within a 
user-defined time span Δt, an output port ‘non-fired’ is activated; 
otherwise, after the expiration of Δt, an output port ‘fired’ is activated. 
Timer components are typically used for actively responding to the 
delayed occurrence of a certain business situation. 
Schedulers [Figure (e)] facilitate recurring activations of downstream 
rule components, e.g., to continuously monitor a rule artefact. 
Schedulers do not have an input port; an output port ‘scheduled’ 
triggers regularly at user-defined intervals Δt. 
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Figure 7 illustrates the proposed separation in a concrete 
example. On the left-hand side, the figure shows a decision 
graph for responding to all those orders of customer #42 
that use a carrier ‘Hawk Trucks Inc.’ for the shipment. On 
the right-hand side, the figure shows the correlation set for 
associating related order and shipment events. During 
runtime, SARI uses the correlation set for correlating events 
before starting the actual rule evaluation. An incoming 
event e is then processed with the pattern-detection state for 
the certain correlation session .S e  Note that the decision 
graph in Figure 7 does not contain any information on  
how to link order events with related shipment events; this 
aspect is defined via the correlation set, which makes the 
pattern model less complex and focused on conditional 
logic only. 

7.1.2 Signals 

Signals are special rule components that, whenever 
activated, notify the detection of a noteworthy event 
situation to higher-level event-processing logic. In  
super-level pattern definitions, the signals of a pattern 
definition p are accessible via corresponding output ports of 
a sub-pattern component referring to p. In concrete S&R 
rules, actions are associated with the various signals of a 
rule’s pattern definition; a S&R rule therefore encapsulates 
processing logic of the form ‘If signal s is activated in the 
pattern-detection logic, then execute action.’ 

To provide access to selected characteristics of a 
matching event situation in a controlled and abstracted 
manner, signal components define a set of output 
parameters O, where 

( ){ }1 2, , ..., | , , , 1 .n j j j jO out out out out i t e j n= = ≤ ≤  

An output parameter out = (i, t, e) is defined by an identifier 
i, a data type t and a correctly-typed expression e. When a 
signal component is activated, an output parameter’s 
expression is evaluated on the underlying event data, 
thereby generating the output parameter’s actual value. 

Additionally, signals can be configured based on the 
following properties: 

• Reset rule state: SARI’s rule engine allows for 
completely resetting the state of a pattern definition for 
a given correlation session. If this property is set for an 
action component, the decision graph is reset 
automatically each time the component is activated. 
Newly incoming business incidents are then processed 
without considering previous events. 

• Silence interval: Silence intervals allow an application 
designer to prevent cascading actions, e.g., when a 
certain threshold is exceeded. Beginning with the  
first successful execution of the described action, a  
so-configured component suppresses all further 
executions for the given period of time. 

 
 
 

Taken together, signals along with their output parameters 
constitute the counterpart to above-described input 
parameters regarding the encapsulation and abstraction of 
concrete pattern-detection logic in pattern definitions. 

7.2 Action model 

The action model covers the ‘respond’ part of SARI’s 
approach to rule-based event processing through so-called 
action definitions. Being associated with a signal of a S&R 
rule’s pattern part, a concrete action is then executed each 
time the described event situation is detected in an incoming 
stream of events. 

Actions currently supported by SARI are listed below. 
By definition, each action definition defines a set of input 
parameters I; as with pattern definitions, these input 
parameters allow configuring encapsulated reaction logic to 
the business scenario to which it is applied. When used as 
part of a concrete S&R rule, input-parameter expressions 
may comprise output parameters of the corresponding 
signal; the respond part of a rule may then be dynamically 
adapted to characteristics of the detected event situation. 

• Event actions describe a response event to be created 
and published whenever the action is executed. Such 
response may in turn trigger a concrete action in the 
source system (e.g., switch off a server) or an 
appropriate event service (e.g., send an e-mail), or serve 
as an input for another, downstream rule instance. An 
event-action definition e = (T, E) is defined by: 
1 the event type T = {(i1, t1), (i2, t2), …, (in, tn)} of the 

described response event 
2 a set of attribute expressions E = {ei | ei: I∗ → ti,  

1 < i < n} for each event attribute (ii, ti) ∈ T, where 
I∗ denotes the set of possible input-parameter 
assignments. 

Having the ability to directly or indirectly affect  
the source system, response events are the ultimate 
outcome of any event processing in SARI. Business-
object actions as described below, by contrast, can be 
considered auxiliary actions for generating appropriate 
response events. 

• Business-object actions comprise several actions for 
creating and updating business objects. Business-object 
actions are dynamically retrieved from plugged-in 
business object providers. For instance, a measure 
action m = (K, v) for incrementing or decrementing 
instances of a user-defined measure type M is defined 
by: 
1 a set of key expressions E = {ei | ei: I∗ → ti,  

1 < i < n} for each of n key properties (ii, ti) of M, 
identifying the concerned measure instance, 

2 an expression :v I ∗ →  calculating the value of 
the addend, i.e., the value by which the measure 
shall be increased or decreased. 
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8 Event processing model 

The proposed architecture is completed by the event 
processing model, which describes the overall event-
processing logic of a SARI application in the form of  
so-called event-processing maps. Event processing maps are 
user-defined orchestrations of sense adapters, event 
services, and response adapters; the proposed meta-model 
is shown in Figure 9. 

Figure 9 Event processing meta-model 

 

Sense adapters translate real-world incidents into events of 
respective event types as defined in the application’s event 
model. Typical sense-adapter implementations read data 
from message queues, log files, or are invoked actively by 
other parts of a company’s IT landscape. Events are then 
routed through a network of event services according to 
user-specified links, so-called event channels, between the 
various map elements. In contrast to request/response-like 
interaction styles as, for instance, known from SOAP’s 
message exchange patterns (W3C, 2007), event processing 
map use an asynchronous, message-based interaction style 
for routing events where a sender operates independently 
from the potential receivers of an event and their actions. 

Event services receive input events from a collection of 
input ports, process these events based upon the 
requirements of the given business scenario, and publish 
response events to a collection of output ports. Event 
services cover any kind of event-triggered activity  
within an event-processing map; typical event-service 
implementations could, for instance, filter, transform or 
enrich event data. SARI offers a rich collection of 
configurable event services for the most common event-
processing tasks. For custom tasks, a .NET API enables 
application developers to implement event services as .NET 
assemblies and incorporate arbitrary event-processing logic. 
Rule services are specialised event services that allow 
evaluating a set of S&R rules on the incoming event stream. 

Response events are finally routed to one or more 
response adapters, which translate the response event into a 
format understandable to the underlying source system. A 
response event adapter could, for instance, add a message to 
a message queue, send an e-mail, or call an API. 

Taken together, the following issues are addressed 
within a SARI application’s event processing model: 

 

• configuration of event services for processing steps 

• interfaces to external systems for receiving data (sense) 
and for responding by executing business transactions 
(respond) 

• event data transformations, event data analysis and 
persistence. 

Figure 10 shows an exemplary event processing map for 
integrating and processing events from a workload 
automation system. Data is collected and received from 
source-system-specific adapters, which capture data from a 
job-scheduling system. Incoming events are enriched in 
order to prepare the event data for the rule processing. A 
typical example would be the attachment of additional job 
data; consider, for instance, scenarios where a source event 
only holds a job ID while the job’s estimated runtime is 
required for the downstream decision-making logic. The 
rule service processes the enriched events according to S&R 
rules, which generate response events when noteworthy 
event situations are detected. The fired response events are 
published on the output port of the rule service and 
forwarded to response adapters. The response adapters 
transmit the response events to external systems by sending 
notifications or invoking a script in the workload 
automation system. 

Figure 10 Event processing model with rule services (see online 
version for colours) 

...

 

9 Example: intelligent workload automation 

Modern IT landscapes have become highly complex 
environments, encompassing hybrid platforms and 
approaches, resources that are spread geographically and 
among a variety of different platforms, workloads that are 
allocated dynamically, and processes that change in 
response to new demands. As IT applications move to 
virtual or cloud environments, the need for intelligent 
automation software will become even greater. 

More and more companies therefore begin to migrate 
from simple, time-based automation approaches (‘start job x 
at y o’clock’) to systems that support context awareness and 
the tracking of processes across the enterprise. Such systems 
automate tasks on an event-driven basis: ‘start job x when y 
occurs’. Also, for maximum agility, companies need tools 
that can automatically and in real-time identify patterns in 
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the complex web of running processes, predict potential 
problems and needs before they become critical, and 
respond with corrective actions. Such tools are able to 
optimise the application and operational performance and 
maximise the efficiency of the resource utilisation. 

In the following, we present a S&R rule for 
automatically controlling the jobs of a workload automation 
system. For our example, we assume that a rule shall 
monitor the resources of an IT environment (such as the 
CPU utilisation) and continuously check for delays and 
overload situations. 

When modelling the rule for the above-stated business 
problem, we first have to identify the events which have to 
be evaluated for the rule processing, i.e., define the 
application’s event model. For our example, we consider the 
following event types: 

• Job started: Raised whenever a job is started on a host. 

• Job ended: Raised whenever a job is stopped on a host. 

‘Job started’ and ‘job ended’ events are correlated with a 
simple correlation set ‘job’, where events are linked if they 
refer to the same job via their ‘job ID’ attribute. The 
correlation set ‘job’ forms the basis for the example’s 
pattern definition as described below. 

Figure 11 shows the pattern definition for the above-
described business scenario. It checks for CPU utilisation 
overheads and considerable overruns of estimated job-
execution times. If these situations occur in parallel, an 
alarm signal ‘delayed by overload’ is raised. The signal 
provides access to the concerned job ID, the estimated and 
the real runtime of the job via output parameters. Also, the 
signal is configured with a silence interval of ten minutes. 
Input parameters allow configuring the concerned host 
(‘host’) and the critical delay in percent (‘delay’). 

On the left-hand side of the decision graph, a  
business-object condition continuously checks the ‘CPU 
utilisation’ measure for the specified host. Measures of said 
measure type are updated centrally in another rule; an 
update of a measure implicitly triggers the evaluation of 
corresponding measure conditions within all pattern 
definitions of the SARI application. 

On the right-hand side, two event conditions are used to 
identify delayed job executions on the specified host. In the 
prior condition, the overall set of jobs is limited to those 
running on the defined host. In the latter condition, the 
difference between the ‘job ended’ and the ‘job started’ 
creation time (i.e., the job’s actual runtime) is compared to 
the estimated runtime of the job as available from the ‘job 
started’ event. If the job is delayed by more than the  
user-defined percentage, the condition evaluates to true. 
Please note that correlation aspects – ensuring that start and 
end events actually belong to each other – are not 
considered in the pattern model but follow from the 
underlying correlation model. 

Table 1 and Table 2 show possible action definitions. 
For our example, we permit users to receive an e-mail 
notification or to reserve additional CPU resources on the 
target host by running a script on that host. 

Figure 11 Pattern definition ‘delay by overload’ (see online 
version for colours) 

 

Table 1 Action definition ‘notify administrator’ 

Input parameters • Message (string) 
• Receiver (string)  

Description E-mail alarm Message to Receiver 
Event type E-mailEvent 

Event attribute Type Expression 

Subject String ‘Alarm!’ 
Text String ‘Alarm Message: ‘ + 

$IN_Message 
Receiver String $IN_Receiver 
Priority Integer 3 

Table 2 Action definition ‘add new resources to host’ 

Input parameters • Number (integer) 
• HostName (string) 

Description Reserve additional Number CPUs for host 
HostName 

Event type ExecuteScriptEvent 

Event attribute Type Expression 

Script String ‘…’ + $IN_Number + ‘…’ 
HostName String $IN_HostName 
User String ‘foo’ 
Password String ‘bar’ 

SARI features a web client for composing S&R rules from 
predefined pattern definitions and action definitions. In a 
first step, the user associates action definitions to the 
various signals of a pattern definition. In a second step, the 
user defines values for all input parameters. Finally, the user 
can activate the so-defined rule and add it to a rule service. 
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10 Experimental results 

In the course of our research we conducted  
several experiments to evaluate the performance of  
S&R rules in real-world business scenarios. The findings 
highlight differences in processing rules of different types 
and quantities, and illustrate the performance implications 
of rule processing within a distributed execution 
environment. In the following, we compare the evaluation 
performance for sets of simple rules and sets of complex 
rules, where in both cases, the number of rules (rule sets  
of 10 rules vs. rule sets of 100 rules) and the number of 
execution nodes (single-node environments vs. two-node 
environments) is varied. For the presented measurements, 
systems with 4 dual-core CPUs and 8 GB of memory were 
used. 

10.1 Processing simple rules, without event 
correlation 

Our first experiment concerns the evaluation of simple rules 
that do not require event correlation; as described in  
Section 7, a so-defined decision graph is evaluated 
independently for each incoming event. In detail, the 
investigated rule sets are configured to satisfy the following 
conditions: 

• total number of triggering event types: 10 

• average number of attributes considered in a rule: 5 

• no event correlation 

• typical rule example: discovery of abnormally ended 
jobs or agents. 

Figure 12 shows the results of our evaluation. Given a rule 
set of 10 rules and a single execution node, SARI’s rule 
engine was able to process 9,903 events per second. The 
results show that the throughput depends on the number of 
rules being processed. Adding additional nodes to the 
system increases the throughput nearly linearly. 

Figure 12 Processing simple rules without event correlation  
(see online version for colours) 

 

10.2 Processing complex rules, with event 
correlation 

Our second experiment focused on complex rules that 
require the usage of event correlation to yield meaningful 
results. In our evaluation, rules of the smaller rule set are 
based upon five different correlation sets in total, and rules 
of the larger rule set are based upon 8 different correlation 
sets in total. Besides, the investigated rules sets are 
configured to satisfy the following characteristics: 

• total number of triggering event types: 10 

• average number of attributes considered in a rule: 7 

• event correlation: events correlated up to 8 dimensions 
(job, job type, job plan, agent, agent type, host, host 
group, client) 

• 10% of all rules include aggregation functions over 
correlated events 

• 10% of all rules include business-object updates and/or 
queries 

• typical rule example: correlation of job events for hosts, 
calculation of an average error rate and discovery of 
high average error rate by host. 

Figure 13 Processing complex rules with event correlation  
(see online version for colours) 

 

Figure 13 shows the results of our evaluation. On a single 
execution node, SARI’s rule engine was able to process 
5,940 events for the smaller rule set and 3,820 events for the 
larger one. The further decrease in throughput observed 
with a larger number of rules is caused by additional 
expenses for event correlation and the evaluation of 
aggregation functions on so-defined groups of events, as 
well as for updating and querying business objects.  
Adding an additional execution node to the SARI system 
increased the throughput to 8,389 events and 5,422 events, 
respectively. From our experiments, we determined that 
using event correlation on multiple execution nodes incurs a 
performance overhead of about 30% resulting from  
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node-to-node communications when sharing correlation 
sessions. This is necessary since events of a common 
correlation session may initially be processed on different 
execution nodes. For more details on the use of correlation 
sessions for synchronisation purposes, the interested reader 
may refer to McGregor and Schiefer (2004). 

11 Conclusions and outlook 

Today’s networked business environments require systems 
which are adaptive and easy to integrate. Event-based 
systems have been developed and used to control  
business processes with loosely coupled systems. In this 
article, we presented a model-driven approach to building 
S&R rules for an event-based system. 

By handling various aspects of an event-based 
application in separate, decoupled sub-models, SARI aims 
for expressiveness as well as manageability: The event 
model defines the structure of all possible event data. 
Relationships between incoming business incidents – e.g., 
whether two events belong to the same real-world business-
process instance – are defined in the correlation model. The 
business object model defines virtual representations of  
real-world business objects such as customers, and  
allows for managing business state in a controlled and  
easy-to-handle manner. The rule model defines S&R rules, 
which associate noteworthy event situations – so-called 
event patterns – with appropriate reaction logic. An event 
situation may comprise sets of correlated events and 
business objects. Orchestration and integration aspects 
finally are handled in the event processing model. 

S&R rules are the key element of a SARI application. In 
the event pattern model, pattern definitions are created from 
easy-to-understand pieces of pattern-detection logic –  
so-called rule components – which are combined with each 
other in a directed, acyclic decision graph. An event 
situation matches a so-defined pattern definition if it 
conforms to (at least) one path through the decision  
graph. Via a set of input parameters, the encapsulated 
pattern-detection logic can be adapted to different business 
scenarios. Signals and output parameters provide access to 
characteristics of a concrete event situation in a controlled 
and abstracted, e.g., to dynamically configure response 
actions. A graphical pattern-definition editor makes pattern 
modelling accessible to business users; exemplary rule-
component shapes and pattern-definition renderings were 
presented throughout this article. 

Taken together, the proposed approach simplifies the 
creation and management of event-triggered rules by means 
of: 

• clean separation of concerns between an event, a 
correlation, a business-object, a pattern and an action 
model 

• creation of complex pattern-detection logic from  
easy-to-understand pieces, via a graphical editor 

• parameterisation and free composition of 
(encapsulated) event-processing logic, making it 
reusable across business scenarios and higher-level 
pattern definitions (i.e., hierarchical pattern modelling). 

The work presented in this article is part of a larger,  
long-term research effort aiming at the development of a 
rule-management system for event-based systems. The key 
focus of this future research work is on modelling and 
managing comprehensive rule libraries for industry 
solutions. Also, we want to add forecasting components to 
SARI which shall allow business users to recognise 
emerging event patterns in order to proactively trigger 
counteractions. 
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Notes 
1 Unless otherwise stated, the described attribute-type model 

will apply to all (non-event-) data types as discussed in the 
remainder of this article. 

2 For further details on SARI’s tailored expression language, 
the interested reader may refer to Rozsynai (2008). 


