
On the Applicability of Combinatorial Testing to
Web Application Security Testing: A Case Study

Bernhard Garn
SBA Research

A-1040 Vienna, Austria
bgarn@sba-research.org

Ioannis Kapsalis
SBA Research

A-1040 Vienna, Austria
ikapsalis@sba-

research.org

Dimitris E. Simos
SBA Research

A-1040 Vienna, Austria
dsimos@sba-
research.org

Severin Winkler
∗

Security Research
A-1040 Vienna, Austria

swinkler@securityresearch.at

ABSTRACT
Case studies for evaluating tools in security testing are powerful.
Although they cannot achieve the scientific rigor of formal exper-
iments, the results can provide sufficient information to help pro-
fessionals judge if a specific technology being evaluated will ben-
efit their organization. This paper reports on a case study done for
evaluating and revisiting a recently introduced combinatorial test-
ing methodology used for web application security purposes. It
further reports on undertaken practical experiments thus strength-
ening the applicability of combinatorial testing to web application
security testing.

Categories and Subject Descriptors
D.2 [Software Engineering]: Testing and Debugging; G.2 [Discrete
Mathematics]: Combinatorics; K.6 [Management of Computing
and Information Systems]: Security and Protection

General Terms
Theory, Security

Keywords
Combinatorial testing, security testing, penetration testing tools,
web application security

1. INTRODUCTION
Covering security issues still remains a big task of the testing

community in academic circles as well as industrial ones. Ensur-
ing safety and security of today’s software and systems is one of

∗Authors are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the big challenges of industry but also of society especially when
considering infrastructure and the still increasing demand of con-
necting services and systems via the internet and other means of
communication. Whereas safety concerns have been considered as
important for a longer time, this is not always the case for security
concerns. Since security threats often are caused because of bugs in
software or design flaws, quality experiments are highly required.

In this paper we provide a framework for testing and detection of
both reflected and stored XSS in web applications. The framework
partly builds upon previous work [1] and is comprised of two parts:
an (automated) combinatorial testing method for generating the in-
put data to be submitted to the SUT, and a semi-manual one for
executing the attack vectors in penetration testing tools. The un-
derlying principle is to use combinatorial testing for concretizing
the input and penetration testing tools to execute the various attack
vectors.

In our case study we use the combinatorial testing tool ACTS [8]
for generation of input strings by specifying parameters and con-
straints in order to structure the inputs for the particular application
domain. Once specified, these inputs are used by the attack pattern
model in order to submit them to a web application. The goal of our
approach is to cover standard XSS exploitation attempts by check-
ing whether certain parts of the SUT are vulnerable to potentially
malicious scripts. The main differences to other techniques and
tools rely in the generation, structure and execution of test cases.

A detailed overview of XSS can be found in [7]. Execution of
attack vectors with other similar methods, like model-based testing
can be found in [2]. We discuss briefly related work concerning
attack grammars for fuzz testing of XSS attack vectors. In particu-
lar, such grammars were employed in [9] and [5, 6] where learning
and evolutionary approaches to detect vulnerabilities has been em-
ployed, respectively.

The paper is structured as follows: Section 2 gives a brief ex-
planation of combinatorial testing and its potential contribution to
security testing. Afterwards, Sections 3 and 4 demonstrate our case
study and the penetration testing tools we have used. Then Sec-
tion 5 discusses the testing results of our approach against other
web applications in the different tools and finally, Section 6 con-
cludes the work.

2. COMBINATORIAL SECURITY TESTING
Testing a SUT requires the existence of test cases and in par-

ticular a method capable of generating such test cases. For devel-
oping our testing framework we can also use methods that arise
from the field of combinatorial testing, which is an effective testing
technique to reveal errors in a given SUT, based on input combina-
tions coverage. Combinatorial testing of strength t (where t ≥ 2)
requires that each t-wise tuple of values of the different system
parameters is covered by at least one test case. Recently, some re-
searchers [3, 10] suggested that some faults or errors in SUTs are a
combination of a few actions when compared to the total number of
parameters of the system under investigation. In that sense, combi-
natorial testing is motivated by the selection of a few test cases in
such a manner that good coverage is still achievable. The collection
of test cases comprises of a test suite and the execution of such a
suite is called a test run. A detailed description of combinatorial
security testing can be found in [1].

In our case study, we have considered a general structure for XSS
attack vectors (test inputs) where each one of them is comprised of
11 discrete parameters (types) briefly discussed below. This struc-
ture builds upon a combinatorial grammar given in [1] by relaxing
constraints and modelling white spaces that appear in an XSS at-
tack vector. In particular, we consider an attack vector to have the
following form:

AV := (JSO,WS1,INT,WS2,EVH,WS3,PAY,WS4,PAS,WS5,JSE).
We briefly describe each one of the types listed in AV:

• The JSO (JavaScript Opening Tags) type represent tags or
that open a JavaScript code block. They also contain values
that use common techniques to bypass certain XSS filters,
like <script> or <img.

• The WS (white space) type family represents the white space
but also variations of it like the tab character in order to cir-
cumvent certain filters, like tab or space.

• The INT (input termination) type represents values that ter-
minate the original valid tags (HTML or others) in order to
be able to insert and execute the payload, like "’> or ">.

• The EVH (event handler) type contains values for JavaScript
event handlers. The usage of JavaScript event handlers is
a common approach to bypass XSS filters that filter out the
typicall JavaScript opening tag like <script> or filters that re-
move brackets (especially < and >) like onLoad(or onError(.

• The PAY (payload) type contains executable JavaScript. This
type contains different types of executable JavaScript in or-
der to bypass certain XSS filters like alert("XSS") or ON-
LOAD=alert(’XSS’)>.

• The PAS (payload suffix) type contains different values that
should terminate the executable JavaScript payload (PAY state
value). The PAS is necessary to produce valid JavaScript
code that is interpreted by a browser like ’) or ’>.

• The JSE (JavaScript end tag) type contains different forms of
JavaScript end tags in order to produce valid JavaScript code
like </script> or >.

The full description of possible type values per type will appear
elsewhere as this is not the topic of the current case study.

The next step in the combinatorial test design process employs
the notion of mixed-level covering arrays (a specific class of com-
binatorial designs). For the sake of completeness we provide below
the definition of mixed-level covering arrays taken from [4] since
this is the underlying generated structure in the ACTS tool:

DEFINITION 1. A mixed-level covering array which we will de-
note as MCA(t, k, (g1, . . . , gk)) is an k × N array in which
the entries of the i-th row arise from an alphabet of size gi. Let
{i1, . . . , it} ⊆ {1, . . . , k} and consider the subarray of size t×N
by selecting rows of the MCA. There are

∏t
i=1 gi possible t-tuples

that could appear as columns, and an MCA requires that each ap-
pears at least once. The parameter t is also called the strength of
the MCA.

For all cases we shall consider in this paper, the parameters of the
MCA are derived from the types that form an XSS attack vector ac-
cording to the following formulation. The number of rows of the
MCA equals to the number of types in the presented form of the at-
tack vector while the size of alphabets gi of the MCA equals to the
number of different values per type. For example, a sample of XSS
attack vectors when we want to test for pairwise interactions (t =
2) derived from an MCA(2, 11, (3, 3, 3, 3, 3, 9, 11, 14, 15, 23)) are
given below:

> o n E r r o r (<XSS> ’)
> onLoad (<XSS> ; </ s c r i p t >

/ / ’ ; o n E r r o r (<XSS > ; / / \ >
< < ’; onLoad (HREF=" / / ha . c k e r s . org / . j "> ;

Sample of XSS Attack Vectors

3. CASE STUDY
The SUTs used in our case study were comprised of a set of web

applications that are included in the open Web Application Security
Project (OWASP) Broken Application Project1:

• Training Applications

– Webgoat - version 5.4

– Mutillidae II - version 2.6.3.1

– Damn Vulnerable Web Application (DVWA) - version
1.8

• Realistic, Intentionally vulnerable Applications

– Gruyere - version 201-07-15

– Bodgeit - version 1.3

All five web applications that we tested, were deployed locally.
Depending on the type of each tested input, we examined both for
reflected cross-site scripting (RXSS) and stored cross-site scripting
(SXSS) attacks. These applications are either training or realis-
tic, intentionally vulnerable applications. They include different
kind of vulnerabilities but for the needs of our case study we fo-
cused only on XSS vulnerabilities. Each application contains one
or more XSS vulnerabilities, both reflected and stored, for testing
purposes which were tested using attack vectors generated by the
combinatorial security testing methodology depicted in Section 2.
Apart from offering the desired vulnerabilities, these web applica-
tions are ideal for our approach since some of them include several
levels of security or depending on the input field they implement
different input validation mechanisms. Higher security settings re-
sult in stricter filters that are harder to bypass. For example, DVWA
and Mutillidae have 3 different security levels and in each one of
them there are different filters applied. Moreover, in Bodgeit the
1https://www.owasp.org/index.php/OWASP_
Broken_Web_Applications_Project

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

input filed in the contact page has a basic input validation by escap-
ing some special character when the input field in the search page
has no input validation. Similarly, DVWA depending on the se-
curity level used, the parameter csrf-token has different value
resulting in different security requirements. This differentiation on
the security levels benefits our case study since we can measure
and identify how well the produced vectors are performing when
different security requirements are taken into account.

The procedure followed in order to identify weaknesses in the
web applications is as following: First we browsed throughout the
applications with the Proxy module enabled. We can use a number
of penetration testing tools in this step, like Burp or ZAP (c.f. Sec-
tion 4), however in our case we used only the Burp Proxy. Brows-
ing through the applications allows us to capture all web traffic
between the browser and the internet. We especially focused on re-
quests and responses linked to a page that includes a user side input
field, since such fields are used as injection point for an XSS attack.
By examining the requests and responses we are able to manually
identify potential vulnerabilities. Following this manual procedure
allowed us to gather all the vulnerable input fields that were used
in our evaluation. All the vulnerable input fields were tested manu-
ally before deploying our automated attacks in order to verify that
such an attack is feasible and the specific input field is appropriate
for our testing. We opted not to use any other automated tool, like
the Scanner offered by Burp, because the testing applications have
limited number of vulnerable inputs which can be easily identified.

4. PENETRATION TESTING TOOLS
In this section we provide details about the two penetration test-

ing tools we have used in our case study. We give a detailed de-
scription of their mechanics, functionality and test oracles, applica-
ble when testing for XSS attacks.

4.1 Burp Suite
The Burp Suite2 is an integrated platform for performing secu-

rity testing of web applications. It was designed to fulfill many
penetration testing tasks and assist security professionals in each
step of a test. In order to test the vector the Intruder module may be
used. This module allows automating customized attacks against
web applications, to identify and exploit all kinds of security vul-
nerabilities including XSS attacks. Moreover, it allows to pick from
various pre-created lists or create custom lists. Multiple values can
be examined with each request in any desired combination. The
Intruder module may also be used with a custom list, which was
the case in our experiments.

One test run was executed using the following process. We browsed
the desired application in order to gather sample requests on the
targeted pages that include a vulnerable input field. In this way we
can easily store cookies and recreate a “natural ”. This is especially
useful, when POST requests are employed to send the data to the
server. Next, we store the HTTP request to the page containing a
potentially vulnerable parameter in the Burp Suite Intruder module.
In case, authentication is needed beforehand, the cookie is passed
along as well. Afterwards, we mark the location of the potentially
vulnerable parameter within the HTTP request and configure the
attack payload (i.e. the produced XSS attack vectors from Section
2) and performance options. The performance options specifically
include the number of parallel requests to be sent. We set the num-
ber of threads to be used equal to five. This has to be determined
empirically, as it depends both on the connection speed as well as
on the performance of the test system. Finally we execute the attack

2http://portswigger.net/burp/

and decide whether an attack payload is flagged as an XSS using
the test oracle described below. Burp offers the feature to store the
results into a CSV file for easier post-processing.

The oracle within Burp Suite was implemented using the “Search
responses for payload strings” configuration option within the in-
truder. This option flags all results where the payloads were exactly
reflected to the output page. The rationale behind this decision is
that if the vector was not blocked or potential dangerous charac-
ters were not stripped out, we assume an XSS vulnerability was
triggered.

4.2 OWASP ZAP Tool
The second penetration tool used in our case study was the open

source tool OWASP Zed Attack Proxy (ZAP)3. Our goal is to ob-
tain an automated testing process where it is required the minimum
interaction from the tester. Similarly to the intruder from ZAP, the
fuzzer tool in ZAP is offering this automation and it can be used for
our attacking procedure which includes exploitation of vulnerabili-
ties using XSS attacks. In our case the fuzzer is not used as it would
be in a usual fuzzing process, which involves injections of invalid,
unexpected or random data to the tested application through differ-
ent inputs. In particular, the fuzzer in ZAP, apart from the provided
fuzz files, gives the ability to add your custom fuzz file which is
then used as a source in the fuzz process. Therefore, we added our
custom files that included the XSS attack vectors produced based
on our combinatorial testing approach (see Section 2). An addi-
tional feature that this fuzzer offers, is the number of threads to
be used while fuzzing. To keep it aligned with Burp we used five
threats.

The fuzzing process in ZAP is trivial and requires only a few
actions from the user. Firstly, we have to access the targeted web
application and send some random string as a parameter using a
vulnerable input field. ZAP while acting as a proxy and intercept-
ing the request, will provide us with all necessary details. In order
to start the fuzzing process we have to highlight the potentially vul-
nerable parameter and select the source file with the attack vectors.
Subsequently, the fuzzer will produce new requests to the web ap-
plication and in each request it will serially parse the custom source
file and replace the highlighted set of characters with one of our
XSS attack vectors. As is the case in Burp, this procedure allowed
us to reproduce a “natural” request and also pass the original cookie
along with this kind of request. The test oracle in ZAP is based on a
simple procedure where if the injected vector is included as a whole
in the response from the web application, then it is determined that
this specific vector was reflected, and therefore we had a successful
XSS attack.

5. EVALUATION
This section describes the evaluation of our case study test re-

sults given in Table 1. Coverage is expressed as a percentage of the
positive attack vectors out of the total we used for testing each ap-
plication and respective input parameter ID and difficulty level for
each combinatorial strength. Moreover, we further analyze some
practical experiences learned by comparing our findings on both
used penetration testing tools and also give a flavor of a combina-
torial testing evaluation in terms of penetration testing.

5.1 Test Results Evaluation with Burp Suite
For the evaluation of the 5 applications the Burp Suite was used

as mentioned in section 4.1. The obtained results are depicted in

3https://www.owasp.org/index.php/OWASP_Zed_
Attack_Proxy_Project

http://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Table 1: Evaluation Results
Strength Application Parameter Type Difficulty ZAP: # Burp: # Total # of Coverage (%) Coverage (%) Execution Execution

ID of level positive positive XSS attack in in time (secs) time (secs)
vulnerability vectors vectors vectors ZAP Burp in ZAP in Burp

2 Mutillidae 1 RXSS 0 345 345 345 100,000 100,000 57 109,4
2 Mutillidae 2 RXSS 0 74 8 345 21,449 2,319 41 289,3
2 Mutillidae 3 RXSS 0 345 38 345 100,000 11,014 45 339,3
3 Mutillidae 1 RXSS 0 4876 4876 4876 100,000 100,000 1562 599,3
3 Mutillidae 2 RXSS 0 1101 122 4876 22,580 2,502 1794 3640,4
3 Mutillidae 3 RXSS 0 4876 593 4876 100,000 12,162 1834 3739,0
4 Mutillidae 1 RXSS 0 53707 53707 53707 100,000 100,000 7463 1016,8
4 Mutillidae 2 RXSS 0 16165 1300 53707 30,098 2,421 8878 733,2
4 Mutillidae 3 RXSS 0 53707 6330 53707 100,000 11,786 7851 722,6

2 Mutillidae 1 RXSS 1 345 345 345 100,000 100,000 46 55,7
2 Mutillidae 2 RXSS 1 74 8 345 21,449 2,319 41 96,6
2 Mutillidae 3 RXSS 1 345 38 345 100,000 11,014 52 58,6
3 Mutillidae 1 RXSS 1 4876 4876 4876 100,000 100,000 1826 875,9
3 Mutillidae 2 RXSS 1 1101 122 4876 22,580 2,502 1722 681,5
3 Mutillidae 3 RXSS 1 4876 593 4876 100,000 12,162 1642 565,0
4 Mutillidae 1 RXSS 1 53707 53707 53707 100,000 100,000 8456 1087,8
4 Mutillidae 2 RXSS 1 16165 1300 53707 30,098 2,421 8649 880,6
4 Mutillidae 3 RXSS 1 53707 6330 53707 100,000 11,786 8014 815,3

2 Mutillidae 1 RXSS 5 0 0 345 0,000 0,000 100 59,0
2 Mutillidae 2 RXSS 5 0 0 345 0,000 0,000 48 54,9
2 Mutillidae 3 RXSS 5 345 38 345 100,000 11,014 44 120,8
3 Mutillidae 1 RXSS 5 0 0 4876 0,000 0,000 1624 1565,6
3 Mutillidae 2 RXSS 5 0 0 4876 0,000 0,000 1663 1543,2
3 Mutillidae 3 RXSS 5 4876 593 4876 100,000 12,162 1561 1375,2
4 Mutillidae 1 RXSS 5 0 0 53707 0,000 0,000 7958 1431,7
4 Mutillidae 2 RXSS 5 0 0 53707 0,000 0,000 7768 2550,1
4 Mutillidae 3 RXSS 5 53707 6320 53707 100,000 11,768 7861 2177,0

2 Bodgeit 1 RXSS 0 345 38 345 100,000 11,014 34 0,6
2 Bodgeit 2 RXSS 0 1 9 345 0,290 2,609 42 0,6
2 Bodgeit 3 SXSS 0 66 57 345 19,130 16,522 34 0,6
2 Bodgeit 4 SXSS 0 0 0 345 0,000 0,000 33 0,5
3 Bodgeit 1 RXSS 0 4876 593 4876 100,000 12,162 491 7,5
3 Bodgeit 2 RXSS 0 12 117 4876 0,246 2,400 497 7,6
3 Bodgeit 3 SXSS 0 880 831 4876 18,048 17,043 497 7,4
3 Bodgeit 4 SXSS 0 0 0 4876 0,000 0,000 488 7,1
4 Bodgeit 1 RXSS 0 53707 6330 53707 100,000 11,786 2934 158,6
4 Bodgeit 2 RXSS 0 10 1279 53707 0,019 2,381 7606 273,3
4 Bodgeit 3 SXSS 0 8877 8996 53707 16,529 16,750 6540 298,6
4 Bodgeit 4 SXSS 0 0 8997 53707 0,000 16,752 6479 168,6

2 Gruyere 1 RXSS 0 1 38 345 0,290 11,014 37 4,1
2 Gruyere 2 SXSS 0 54 6 345 15,652 1,739 61 5,4
3 Gruyere 1 RXSS 0 33 593 4876 0,677 12,162 507 66,2
3 Gruyere 2 SXSS 0 661 88 4876 13,556 1,805 7053 475,9

2 WebGoat 2 RXSS 0 181 305 345 52,464 88,406 99 1,4
3 WebGoat 2 RXSS 0 1158 4409 4876 23,749 90,422 1052 11,2
4 WebGoat 2 RXSS 0 16109 48691 53707 29,994 90,660 5169 105,8

2 DVWA 1 RXSS 0 345 38 345 100,000 11,014 41 1,4
2 DVWA 2 SXSS 0 150 150 345 43,478 43,478 246 1,2
3 DVWA 1 RXSS 0 4876 593 4876 100,000 12,162 512 10,3
3 DVWA 2 SXSS 0 2147 2149 4876 44,032 44,073 1041 36,0
4 DVWA 1 RXSS 0 53707 6330 53707 100,000 11,786 7711 92,6
4 DVWA 2 SXSS 0 22732 23402 53707 42,326 43,573 12788 1958,7

2 DVWA 1 RXSS 1 230 28 345 66,667 8,116 45 1,4
2 DVWA 2 SXSS 1 0 0 345 0,000 0,000 35 1,1
3 DVWA 1 RXSS 1 3255 415 4876 66,756 8,511 503 9,4
3 DVWA 2 SXSS 1 0 0 4876 0,000 0,000 3665 34,2
4 DVWA 1 RXSS 1 29445 4220 53707 54,825 7,857 6334 386,2
4 DVWA 2 SXSS 1 0 2 53707 0,000 0,004 8224 2271,0

Table 1. The tested HTML input fields were of type text and text
area. The performance of the tool in general was acceptable as
there were not errors or application crashes. Of the 5 applications,
DVWA and Mutillidae support setting different security levels that
affect the filters that are applied to the input fields. Higher security
settings result in stricter filters that are harder to bypass. There-
fore, the parameters were treated as different test runs depending
on these security settings.

The Burp Suite performed well in finding XSS vulnerabilities

using the vectors generated by our combinatorial testing approach.
Out of all 58 test runs only 10 were not flagged as XSS. When
taking into account only strength 2, Burp Suite did not detect 4 pa-
rameters yielding a 80,0% success rate. With strength 3 the result
was the same (80,0%) and with strength 4 the result was better with
88,9% because only 2 parameters were not detected. The compari-
son between the three different results can be seen in Figure 1. The
XSS detection rate was measured as a fraction of the successful
exploits occurred per total input field parameters of the tested web

Figure 1: Comparison of XSS detection rate with different combinatorial strength

applications.
Only in 6 of the 58 test runs all vectors were reflected directly

to the web pages resulting in a XSS detection. These 6 cases were
carried out on the same parameter in the Mutillidae application on
low and medium security level. This means that with all other test
runs some filter mechanisms were in place that stripped some of the
inputs. From a practical point of view this seems to be caused by
filters on the one hand or due to some parameter processing issues
like output context. As we employed a general grammar to generate
our XSS attack vectors we did not take into account different output
contexts like attributes, JavaScript or CSS.

The DVWA and Mutillidae applications support different secu-
rity settings that change the behavior of the application to reflect
better filters and validators. Setting the security to the second level
only 2 parameters of the DVWA applications where not flagged as
XSS and 4 were flagged. This means we yielded a 66,6% success
rate compared to 100% on low security level. This is a big drop
of the success rate and further research is needed to evaluate better
grammars to bypass filters. Within the Mutillidae application the
rising of the security level to the second level did not affect the test
results after all. All 9 test runs with this security setting resulted
in a successful XSS detection meaning that our grammar was able
to bypass the employed filter mechanisms. Mutillidae supports set-
ting the security level to a third very strict mode. Using this secu-
rity mode only Mutillidae parameter #3 was detected as vulnerable
to XSS and parameter #1 and #2 where no more detected due to
the strict filters that are applied in the “high security” mode. This
was an expected behavior. The most interesting test runs are those
where only a few vectors resulted in a XSS detection. Our ex-
periments contain 5 test runs where less than 10 vectors bypassed
a filter. These vectors aid towards understanding the different fil-
ter mechanisms of the applications under test. They show which
characters are filtered and thus they can used as a pattern basis to
produce better grammars.

5.2 Test Results Evaluation with ZAP Tool
The evaluation of the five web applications using ZAP is also

presented in Table 1. The overall performance of the tool was ac-
ceptable regarding the detection rate, but problematic regarding the
execution time and the system errors produced while testing. Sec-
tion 5.3 includes detailed information regarding the problems with
execution time and the errors caused by ZAP.

While using our combinatorial testing approach and the attack-
ing vectors produced by this method, we managed to achieve very
good results with ZAP, similar to those achieved with Burp. In total
we executed 58 test runs which included XSS vulnerabilities, and

ZAP failed to find a XSS vulnerability in only 12 of them. The
detection rate for strength 2 was 80% since in only 4 out of the 20
test runs our vectors were unsuccessful in detecting a XSS vulner-
ability. When testing with strength 3 and strength 4 the detection
rate was not improved, but remained exactly the same (80%).

Out of the 58 test runs that we had when testing with ZAP, in
21 of them all of our vectors penetrated the web applications. This
includes all the different security levels and the 3 different levels of
strength in our vectors. In 9 runs out of the 21, a security mecha-
nism was present but did not manage to block our vectors. On the
other hand, we had 23 runs were a portion of our vectors success-
fully went through the security filter mechanisms. This is translated
to 40% successful test runs were our vectors managed to overpass
the security filters applied by the web applications. When analyz-
ing a specific web application, we can see that in DVWA the in-
crease of the security level from low to medium not only achieved
to block more of our vectors, but also managed to totally secure the
application against SXSS attacks, independently of the strength of
our vectors. Likewise, Mutillidae offers three different levels of se-
curity. The filters in the first two levels were unsuccessful to protect
the web application since we did not have a test run where at least
one of our vectors did not went through. However, in the highest
security level, the strict security filters that take place, allowed us
to penetrate only parameter #3.

5.3 Practical Experiences from Testing Tools

5.3.1 Comparison based on Results
When analyzing the obtained results we can reckon that in the

most of our test runs, we get different numbers of successful vec-
tors from the two tools used. In an overall analysis, ZAP detected
in average 25% more successful vectors than Burp. This does not
automatically mean that ZAP performed better than Burp. In our
analysis we do not have a formal explanation of this behavior but
we have some indications leading us to the following assumptions.
First we believe that there are small differences in the test oracles,
despite that the same principle is followed in both tools. Our second
assumption is that ZAP is using different encoding when creating
the requests compared to the encoding of Burp. This leads to han-
dling the request by the web application in a different manner and
thus obtaining different results.

Regarding the performance of our vectors, we observed that does
not depend on the strength of our vectors, as the percentage of the
successful ones remains the same. In only two cases while using
Burp we had increased performance when testing with strength 4.
For example, in DVWA where Burp detected two successful vec-

tors, one of them was

’;onLoad()

This vector was not actually successful because the response in-
cluded the following string:

\’;onLoad()

when Burp considers these vectors successful. In this case, the
filter used by the application was to encode “ ’ ” with a “ \ ”.
Burp oracle is detecting a successful vector based on the fact that
it was reflected, but without taking into account if there is an es-
caping character before the string. But again, in total there is not a
significant increase in the percentage of positive vectors when the
combinatorial strength is increased.

5.3.2 Comparison on the Performance Side
ZAP performed relatively well when testing with combinatorial

strength 2, in terms of execution time since it required less than a
minute in almost all test runs, to complete the experiment. How-
ever, when testing with combinatorial strength 3 or 4, where the
attack vectors are 4876 and 53707 respectively, the execution time
rises significantly. Depending on the web application, the execu-
tion time for strength 3 ranged from six minutes to one hour for
one run on DVWA. Nevertheless, the time required for the test
runs with combinatorial strength 3 was usually not more than half
hour. This performance can already be considered problematic, es-
pecially when compared with Burp, but the major problem on our
test runs arose when executing the attack vectors produced with
combinatorial strength 4. The execution time varied from one hour
up to two hours and a half. This was a big obstacle in completing
our test runs. When ZAP was running a test run for such a long
time it was lagging and becoming unresponsive in most of the test
runs. Additionally, the five web applications forming the basis of
our case study were also becoming unresponsive when tested for a
long period, which led us in restarting them several times on our
local server.

In order to identify the reason for this behavior, we monitored
the memory allocation as well as the computational power required
by ZAP while doing the test runs with strength 4. Again, we do
not have a formal explanation for this behavior but we elaborate on
some interesting remarks. Our server has an eight core processor
and 16 Gigabytes of RAM and it is running OpenSUSE 13.1. While
ZAP was running we noticed that usually one processor is near to
its full capacity, when the remaining 7 are either in idle mode or
a maximum 20% of their power was used. This is an indication
that ZAP has a poor performance in multi-threading. The mem-
ory allocation was usually between 300 MB and 400 MB which is
far less than our system’s max capacity. These observations could
not justify the behavior of ZAP in our system since it seems that
our server had handle pretty well ZAP’s needs. However, ZAP led
our server to crash several times especially when running tests for
combinatorial strength 4. We also tested ZAP on another Linux
machine running Kali distribution, but with limited hardware ca-
pabilities. The behavior of ZAP was similar to what we already
described on OpenSUSE. We observed the following interesting
remark when performed the same test runs with strength 4, on a
Windows environment on the same machine with the limited capa-
bilities. Termwise, the performance of ZAP was the same, which
encourages our previous assumption that ZAP failed to take advan-
tage of our server’s higher capabilities. The surprising point is that
ZAP did not crash once when running on Windows. As a results
we assume that when ZAP is running on Linux, it is producing an
exception which is not handled properly by the operating system
and leads our system to crash.

6. CONCLUSION
In this paper, we presented a case study that strengthens the ap-

plicability of combinatorial testing to web application security test-
ing, and in particular when testing for XSS vulnerabilities. The
applications that were tested are standard web application that use
mainly traditional concepts for data transport. From a practical
point of view it would be interesting to test web applications that
use new approaches like client side JavaScript to process variables,
mobile concepts or server side JavaScript frameworks. However,
regardless of the transport mechanism the filter mechanisms (out-
put encoding and input validation) must still be in place to prevent
XSS.

7. ACKNOWLEDGEMENTS
The research presented in the paper has been funded in part by

the Austrian Research Promotion Agency (FFG) under grant 832185
(MOdel-Based SEcurity Testing In Practice) and ITEA-2 (DIA-
MONDS) and the Austrian COMET Program (FFG). In addition,
the work of the third author was carried out during the tenure of
an ERCIM “Alain Bensoussan” Fellowship Programme. The re-
search leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement no. 246016.

8. REFERENCES
[1] J. Bozic, D. E. Simos, and F. Wotawa. Attack pattern-based

combinatorial testing. In Proceedings of the 9th International
Workshop on Automation of Software Test (AST), pages 1–7,
2014.

[2] J. Bozic and F. Wotawa. Xss pattern for attack modeling in
testing. In Proceedings of the 8th International Workshop on
Automation of Software Test (AST), 2013.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: An approach to testing based on
combinatorial design. IEEE Trans. Softw. Eng.,
23(7):437–444, 1997.

[4] C. J. Colbourn. Covering arrays. In C. J. Colbourn and J. H.
Dinitz, editors, Handbook of Combinatorial Designs,
Discrete Mathematics and Its Applications, pages 361–365.
CRC Press, Boca Raton, Fla., 2nd edition, 2006.

[5] F. Duchene, R. Groz, S. Rawat, and J.-L. Richier. Xss
vulnerability detection using model inference assisted
evolutionary fuzzing. In Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verification
and Validation, ICST ’12, pages 815–817, Washington, DC,
USA, 2012. IEEE Computer Society.

[6] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz.
KameleonFuzz: Evolutionary Fuzzing for Black-Box XSS
Detection. In CODASPY. ACM, 2014.

[7] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D.
Petkov. XSS Attacks: Cross Site Scripting Exploits and
Defense. Syngress, 2007.

[8] NIST. User Guide for ACTS.
[9] O. Tripp, O. Weisman, and L. Guy. Finding your way in the

testing jungle: A learning approach to web security testing.
In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages 347–357,
New York, NY, USA, 2013. ACM.

[10] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering arrays
for efficient fault characterization in complex configuration
spaces. Software Engineering, IEEE Transactions on,
32(1):20–34, 2006.

	Introduction
	Combinatorial Security Testing
	Case Study
	Penetration Testing Tools
	Burp Suite
	OWASP ZAP Tool

	Evaluation
	Test Results Evaluation with Burp Suite
	Test Results Evaluation with ZAP Tool
	Practical Experiences from Testing Tools
	Comparison based on Results
	Comparison on the Performance Side

	Conclusion
	Acknowledgements
	References

